Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Environ Toxicol ; 39(3): 1163-1174, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37860879

RESUMO

Cadmium (Cd) as a ubiquitous toxic heavy metal is reported to affect the nervous system. Selenium (Se) has been shown to have antagonistic effects against heavy metal toxicity. In addition, it shows potential antioxidant and anti-inflammatory properties. Thus, the purpose of this study was to determine the possible mechanism of brain injury after high Cd exposure and the mitigation of Nano-selenium (Nano-Se) against Cd-induced brain injury. In this study, the Cd-treated group showed a decrease in the number of neurons in brain tissue, swelling of the endoplasmic reticulum and mitochondria, and the formation of autophagosomes. Nano-Se intervention restored Cd-caused alterations in neuronal morphology, endoplasmic reticulum, and mitochondrial structure, thereby reducing neuronal damage. Furthermore, we found that some differentially expressed genes were involved in cell junction and molecular functions. Subsequently, we selected eleven (11) related differentially expressed genes for verification. The qRT-PCR results revealed the same trend of results as determined by RNA-Seq. Our findings also showed that Nano-Se supplementation alleviated Cx43 phosphorylation induced by Cd exposure. Based on immunofluorescence colocalization it was demonstrated that higher expression of GFAP and lower expressions of Cx43 were restored by Nano-Se supplementation. In conclusion, the data presented in this study establish a direct association between the phosphorylation of Cx43 and the occurrence of autophagy and neuroinflammation. However, it is noteworthy that the introduction of Nano-Se supplementation has been observed to mitigate these alterations. These results elucidate the relieving effect of Nano-Se on Cd exposure-induced brain injury.


Assuntos
Lesões Encefálicas , Cérebro , Selênio , Humanos , Selênio/farmacologia , Cádmio/toxicidade , Conexina 43/metabolismo , Conexinas/metabolismo , Fosforilação , Cérebro/metabolismo
2.
Ecotoxicol Environ Saf ; 215: 112135, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33780782

RESUMO

Cadmium (Cd) is a ubiquitous environmental pollutant, which mainly input to the aquatic environment through discharge of industrial and agricultural waste, can be a threat to human and animal health. Selenium (Se) possesses a beneficial role in protecting animals and ameliorating the toxic effects of Cd. However, the comparative antagonistic effects of different Se sources such as inorganic, organic Se and nano-form Se on Cd toxicity are still under-investigated. Hence, the purpose of this study was to evaluate the comparative of Se sources antagonism on Cd-induced nephrotoxicity via oxidative stress and selenoproteome transcription. In the present study, Cd-diet disturbed in the system balance of 5 trace elements (Zinc (Zn), copper (Cu), Iron (Fe), Se, Cd) and impaired renal function. Se sources, including nano- Se (NS), Se- yeast (SY), sodium selenite (SS) and mixed selenium (MS) significantly recovered the balance of 4 trace elements (Zn, Cu, Cd, Se) and renal impaired indexes (blood urea nitrogen (BUN) and creatinine (CREA)). Histological appearance of Cd-treated kidney indicated renal tubular epithelial vacuoles, particle degeneration and enlarged capsular space. Ultrastructure observation results illustrated that Cd-induced mitochondrial cristae reduction, membrane disappearance, and nuclear deformation. Treatment with Se sources, NS appeared a better impact on improving kidney tissues against the pathological alterations resulting from Cd administration. Meanwhile, NS reflected a significant impact on relieving Cd-induced kidney oxidative damage, and significantly restored the antioxidant defense system of the body. Our findings also showed NS ameliorated the Cd-induced downtrends expression of selenoproteome and selenoprotein synthesis related transcription factors. Overall, NS was the most effective Se source in avoiding of Cd cumulative toxicity, improving antioxidant capacity and regulating of selenoproteome transcriptome and selenoprotein synthesis related transcription factors expression, which contributes to ameliorate Cd-induced nephrotoxicity in chickens. These results demonstrated diet supplement with NS may prove to be an effective approach for alleviating Cd toxicity and minimizing Cd -induced health risk.


Assuntos
Cádmio/toxicidade , Substâncias Protetoras/metabolismo , Selênio/metabolismo , Animais , Antioxidantes/metabolismo , Galinhas/metabolismo , Cobre/metabolismo , Suplementos Nutricionais , Humanos , Ferro/metabolismo , Rim/efeitos dos fármacos , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Selenoproteínas/metabolismo , Selenito de Sódio , Oligoelementos/metabolismo , Fermento Seco , Zinco/metabolismo
3.
Environ Pollut ; 360: 124677, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39127336

RESUMO

Mitochondria, as the powerhouse of the cell, play a vital role in maintaining cellular energy homeostasis and are known to be a primary target of cadmium (Cd) toxicity. The improper targeting of proteins to mitochondria can compromise the normal functions of the mitochondria. However, the precise mechanism by which protein localization contributes to the development of mitochondrial dysfunction induced by Cd is still not fully understood. For this research, Hy-Line white variety chicks (1-day-old) were used and equally distributed into 4 groups: the Control group (fed with a basic diet), the Cd35 group (basic diet with 35 mg/kg CdCl2), the Cd70 group (basic diet with 70 mg/kg CdCl2) and the Cd140 group (basic diet with 140 mg/kg CdCl2), respectively for 90 days. It was found that Cd caused the accumulation of heat shock factor 1 (HSF1) in the mitochondria, and the overexpression of HSF1 in the mitochondria led to mitochondrial dysfunction and neuronal damage. This process is due to the mitochondrial HSF1 (mtHSF1), causing mitochondrial fission through the upregulation of dynamin-related protein 1 (Drp1) content, while inhibiting oligomer formation of single-stranded DNA-binding protein 1 (SSBP1), resulting in the mitochondrial DNA (mtDNA) deletion. The findings unveil an unforeseen role of HSF1 in triggering mitochondrial dysfunction.

4.
J Hazard Mater ; 470: 134126, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38554509

RESUMO

Cadmium (Cd) is a well-known testis toxicant. The blood-testis barrier (BTB) is a crucial component of the testis. Cd can disrupt the integrity of the BTB and reproductive function. However, the mechanism of Cd-induced disruption of BTB and testicular damage has not been fully elucidated. Here, our study investigates the effects of Cd on BTB integrity and testicular dysfunction. 80 (aged 1 day) Hy-Line white variety chickens were randomly designed into 4 groups and treated for 90 days, as follows: control group (essential diet), 35 Cd, 70 Cd and 140 Cd groups (35, 70 and 140 mg/kg Cd). The results found that Cd exposure diminished volume of the testes and induced histopathological lesions in the testes. Exposure to Cd induced an inflammatory response, disrupted the structure and function of the FAK/occludin/ZO-1 protein complex and disrupted the tight junction and adherens junction in the BTB. In addition, Cd exposure reduced the expression of steroid-related proteins and inhibited testosterone synthesis. Taken together, these data elucidate that Cd disrupts the integrity of the BTB and further inhibits spermatogenesis by dissociating the FAK/occludin/ZO-1 complex, which provides a basis for further investigation into the mechanisms of Cd-induced impairment of male reproductive function and pharmacological protection.


Assuntos
Barreira Hematotesticular , Cádmio , Galinhas , Testículo , Animais , Masculino , Barreira Hematotesticular/efeitos dos fármacos , Cádmio/toxicidade , Quinase 1 de Adesão Focal/metabolismo , Ocludina/metabolismo , Espermatogênese/efeitos dos fármacos , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testículo/patologia , Testosterona/sangue , Proteína da Zônula de Oclusão-1/metabolismo
5.
Sci Total Environ ; 919: 170724, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38325449

RESUMO

Di(2-ethylhexyl) phthalate (DEHP) is a synthetic chemical applied as a plasticizer. As an environmental toxicant, DEHP poses a serious health threat. Many studies have revealed that DEHP can cause lead to various degrees of damage to the kidney. However, the evidence of DEHP-induced renal ferroptosis has not been reported. The purpose of this work was to probe the specific role of lipophagy in DEHP-induced renal injury and to investigate the relationship between lipophagy and ferroptosis. Quail were treated with DEHP (250 mg/kg BW/day, 500 mg/kg BW/day and 750 mg/kg BW/day) for 45 days. Microstructural and ultrastructural observations showed that DEHP caused damage to glomerular and tubular cells, and autophagy with multilayer structures were observed, suggesting that DEHP can induce lipophagy. The results indicated that the iron homeostasis was abnormal and the lipid peroxidation was increased. SLC7A11 and SLC3A2 were down-regulated. PTGS2, ACSL4 and LPCAT3 were elevated. In conclusion, DEHP could induce lipid peroxidation, lead to ferroptosis, and damage renal cells. Therefore, the relationship between lipophagy and ferroptosis was elucidated, which provided a new basis for intervention and prevention of DEHP increased diseases.


Assuntos
Dietilexilftalato , Ferroptose , Ácidos Ftálicos , Animais , Coturnix , Codorniz , Dietilexilftalato/toxicidade , Rim
6.
Sci Total Environ ; 935: 173249, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38754502

RESUMO

Selenium (Se), a highly beneficial animal feed additive, exhibits remarkable antioxidant and anti-inflammatory properties. Nano­selenium (Nano-Se) is an advanced formulation of Se featuring a specialized drug delivery vehicle, with good bioavailability, higher efficacy, and lower toxicity compared to the traditional form of Se. With the advancement of industry, cadmium (Cd) contamination occurs in different countries and regions and thereby contaminating different food crops, and the degree of pollution is degree increasing year by year. The present investigation entailed the oral administration of CdCl2 and/or Nano-Se to male chickens of the Hy-Line Variety White breed, which are one day old, subsequent to a 7-day adaptive feeding period, for a duration of 90 days. The study aimed to elucidate the potential protective impact of Nano-Se on Cd exposure. The study found that Nano-Se demonstrates potential in mitigating the blood-brain barrier (BBB) dysfunction characterized by impairment of adherens junctions (AJS) and tight junctions (TJS) by inhibiting reactive oxygen species (ROS) overproduction. In addition, the data uncovered that Nano-Se demonstrates a proficient ability in alleviating BBB impairment and inflammatory reactions caused by Cd through the modulation of the Wnt7A/ß-catenin pathway, highlights its potential to maintain brain homeostasis. Hence, this research anticipates that the utilization of Nano-Se effectively mitigate the detrimental impacts associated with Cd exposure on the BBB.


Assuntos
Barreira Hematoencefálica , Cádmio , Galinhas , Selênio , Animais , Cádmio/toxicidade , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Masculino , beta Catenina/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos
7.
Poult Sci ; 103(6): 103730, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631229

RESUMO

Atrazine (ATR) is widely used worldwide as a commercial herbicide, Diaminochlorotriazine (DACT) is the main metabolite of ATR in the organism. Both of them disrupt the production of steroids and induce abnormal reproductive development. The granulosa cells (GCs) are important for growth and reproduction of animals. However, the toxicity of ATR on the GCs of birds is not well clarified. To evaluate the effect of the environmental pollutant ATR on bird GCs. The quail GCs were allotted into 7 groups, C (The medium of M199), A20 (20 µM ATR), A100 (100 µM ATR), A250 (250 µM ATR), D20 (20 µM DACT), D100 (100 µM DACT) and D200 (200 µM DACT). The results demonstrated that ATR reduced the viability of GCs, disrupted mitochondrial structure (including mitochondrial cristae fragmentation and the mitochondrial morphology disappearance) and decreased mitochondrial membrane potential. Meanwhile, ATR interfered with the expression of key factors in the steroid synthesis pathway, inducing the secretion of the sex hormones E2 and P in GCs. which in turn induced apoptosis. Furthermore, the Nrf2/ARE pathway as a potential target to ameliorate ATR-induced endocrine disruption in GCs for proper reproductive functions. Our research provides a new perspective for understanding the effects of ATR on reproductive functions in birds.


Assuntos
Atrazina , Disruptores Endócrinos , Células da Granulosa , Herbicidas , Fator 2 Relacionado a NF-E2 , Animais , Atrazina/toxicidade , Células da Granulosa/efeitos dos fármacos , Feminino , Herbicidas/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Disruptores Endócrinos/toxicidade , Coturnix , Proteínas Aviárias/metabolismo , Proteínas Aviárias/genética , Transdução de Sinais/efeitos dos fármacos
8.
J Agric Food Chem ; 72(26): 14956-14966, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38820047

RESUMO

Atrazine (ATR) is a widely used herbicide worldwide that can cause kidney damage in humans and animals by accumulation in water and soil. Lycopene (LYC), a carotenoid with numerous biological activities, plays an important role in kidney protection due to its potent antioxidant and anti-inflammatory effects. The current study sought to investigate the role of interactions between mtDNA and the cGAS-STING signaling pathway in LYC mitigating PANoptosis and inflammation in kidneys induced by ATR exposure. In our research, 350 mice were orally administered LYC (5 mg/kg BW/day) and ATR (50 or 200 mg/kg BW/day) for 21 days. Our results reveal that ATR exposure induces a decrease in mtDNA stability, resulting in the release of mtDNA into the cytoplasm through the mPTP pore and the BAX pore and the mobilization of the cGAS-STING pathway, thereby inducing renal PANoptosis and inflammation. LYC can inhibit the above changes caused by ATR. In conclusion, LYC inhibited ATR exposure-induced histopathological changes, renal PANoptosis, and inflammation by inhibiting the cGAS-STING pathway. Our results demonstrate the positive role of LYC in ATR-induced renal injury and provide a new therapeutic target for treating renal diseases in the clinic.


Assuntos
Atrazina , DNA Mitocondrial , Rim , Licopeno , Proteínas de Membrana , Substâncias Protetoras , Animais , Camundongos , Atrazina/toxicidade , Rim/efeitos dos fármacos , Rim/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Licopeno/farmacologia , Licopeno/administração & dosagem , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Masculino , Substâncias Protetoras/farmacologia , Substâncias Protetoras/administração & dosagem , Humanos , Herbicidas , Nefropatias/metabolismo , Nefropatias/induzido quimicamente , Nefropatias/prevenção & controle , Nefropatias/genética , Nefropatias/tratamento farmacológico , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
J Agric Food Chem ; 71(31): 12043-12051, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37471304

RESUMO

Cadmium is highly toxic and present in the environment and can be accumulated among various levels of the food chain. Both humans and animals are at risk from toxicity associated with cadmium. However, the neurological endpoint caused by cadmium has not been revealed. The aim of our research is to explore the potential target of cadmium attack when causing neurotoxicity. 80 male chickens (one day old, weighing 36.49 ± 2.88 g) were randomly divided into four groups and independently treated with 0, 35, 70, or 140 mg/kg CdCl2 in diet for 90 days. The result showed that the striatum was damaged due to a high dose of cadmium in the brain, which was characterized by degeneration of neurons and astrocyte dysfunction. Transcriptome analysis demonstrated that striatal astrocytes were transformed into the A1 state under cadmium exposure. Deeper investigation revealed that the internalization of gap junction protein connexin 43 was responsible for this transformation. Eventually, we can conclude that the internalized gap junction protein connexin 43 of astrocytes is the target of cadmium anchoring, and this process was accompanied by the transformation of astrocytes into the A1 subtype. This study provides a new direction for exploring the effects of cadmium on the nervous system and the treatment of subsequent nervous system diseases.


Assuntos
Conexina 43 , Conexinas , Humanos , Animais , Masculino , Conexinas/metabolismo , Conexinas/farmacologia , Conexina 43/genética , Conexina 43/metabolismo , Cádmio/metabolismo , Astrócitos/metabolismo , Galinhas/metabolismo
10.
J Nutr Biochem ; 113: 109266, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36610486

RESUMO

Di (2-ethylhexyl) phthalate (DEHP) is commonly used as a plasticizer in plastic products, and due to its unique chemical composition, it frequently dissolves and enters the environment. Lycopene as a natural carotenoid has been shown to have powerful antioxidant capacity and strong kidney protection. This study aimed to investigate the role of the interplay between oxidative stress and the classical pyroptosis pathway in LYC alleviating DEHP-induced renal injury. ICR mice were given DEHP (500 mg/kg/d or 1000 mg/kg/d) and/or LYC (5 mg/kg/d) for 28 days to explore the underlying mechanisms of this hypothesis. Our results indicated that DEHP caused the shedding of renal tubular epithelial cells, increased the content of kidney injury molecule-1 (Kim-1) and neutrophil gelatinase-associated lipocalin (NGAL) in the tissue, the decrease of antioxidant activity markers and the increase of oxidative stress indexes. It is gratifying that LYC alleviates DEHP-induced renal injury. The expression of nuclear factor erythrocyte 2-related factor 2 (Nrf2) and its downstream target genes is improved in DEHP induced renal injury through LYC mediated protection. Meanwhile, LYC supplementation can inhibit DEHP-induced Caspase-1/NLRP3-dependent pyroptosis and inflammatory responses. Taken together, DEHP administration resulted in nephrotoxicity, but these changes ameliorated by LYC may through crosstalk between the Nrf2/Keap-1/NLRP3/Caspase-1 pathway. Our study provides new evidence that LYC protects against kidney injury caused by DEHP.


Assuntos
Dietilexilftalato , Rim , Licopeno , Piroptose , Animais , Camundongos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Caspases/metabolismo , Dietilexilftalato/toxicidade , Dietilexilftalato/metabolismo , Rim/metabolismo , Rim/patologia , Licopeno/farmacologia , Camundongos Endogâmicos ICR , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo , Piroptose/efeitos dos fármacos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo
11.
J Agric Food Chem ; 71(25): 9896-9907, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37306234

RESUMO

Cadmium (Cd) is a hazardous environmental metal that poses a global public health concern due to its high toxic potential. Nanoselenium (Nano-Se) is a nanoform of elemental Se that is widely used to antagonize heavy metal toxicity owing to its high safety margin with low doses. However, the role of Nano-Se in relieving Cd-induced brain damage is unclear. For this study, Cd-exposure-induced cerebral damage was established by using a chicken model. Administration of Nano-Se with Cd significantly decreased the Cd-mediated elevation of cerebral ROS, MDA, and H2O2 levels as well as markedly increased the Cd-mediated reduced activities of antioxidant biomarkers (GPX, T-SOD, CAT, and T-AOC). Accordingly, co-treatment with Nano-Se significantly reduced Cd-mediated increased Cd accumulation and recovered the Cd-induced biometal imbalance, notably Se and Zn. Nano-Se downregulated the Cd-induced upregulation of ZIP8, ZIP10, ZNT3, ZNT5, and ZNT6 and upregulated the Cd-mediated decreased expressions of ATOX1 and XIAP. Nano-Se also increased the Cd-mediated decreased mRNA levels of MTF1 and its target genes MT1 and MT2. Surprisingly, co-treatment with Nano-Se regulated the Cd-induced increased total protein level of MTF1 by reducing its expression. Moreover, altered selenoproteins regulation was recovered after co-treatment with Nano-Se as evidenced by increased expression levels of antioxidant selenoproteins (GPx1-4 and SelW) and Se transport-related selenoproteins (SepP1 and SepP2). The histopathological evaluation and Nissl staining of the cerebral tissues also supported that Nano-Se markedly reduced the Cd-induced microstructural alterations and well preserved the normal histological architectures of the cerebral tissue. Overall, the results of this research reveal that Nano-Se may be beneficial in mitigating Cd-induced cerebral injury in the brains of chickens. This present study provides a basis for preclinical research for its usefulness as a potential therapeutic for the treatment of neurodegeneration in the heavy-metal-induced neurotoxicity.


Assuntos
Antioxidantes , Selênio , Animais , Antioxidantes/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Selênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Galinhas/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Fatores de Transcrição/metabolismo , Estresse Oxidativo
12.
Environ Sci Pollut Res Int ; 30(48): 106648-106659, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37730984

RESUMO

The heat shock response (HSR) is a cellular protective mechanism that is characterized by the induction of heat shock transcription factors (HSFs) and heat shock proteins (HSPs) in response to diverse cellular and environmental stressors, including cadmium (Cd). However, little is known about the relationship between the damaging effects of Cd and the HSR pathway in the chicken cerebrum following Cd exposure. To explore whether Cd exposure elicits cerebral damage and triggers the HSR pathway, chicks were exposed to Cd in the daily diet at different concentrations (35, 70, or 140 mg/kg feed) for 90 days, while a control group was fed the standard diet without Cd. Histopathological examination of cerebral tissue from Cd-exposed chickens showed neuronal damage, as evidenced by swelling and degeneration of neurons, loss of neurons, and capillary damage. Cd exposure significantly increased mRNA expression of HSF1, HSF2, and HSF3, and mRNA and protein expression of three major stress-inducible HSPs (HSP60, HSP70, and HSP90). Moreover, Cd exposure differentially modulated mRNA expression of small HSP (sHSPs), most notably reducing expression of HSP27 (HSPB1). Furthermore, Cd exposure increased TUNEL-positive neuronal apoptotic cells and up-regulated protein expression of caspase-1, caspase-8, caspase-3, and p53, leading to apoptosis. Taken together, these data demonstrate that activation of the HSR and apoptotic pathways by Cd exposure is involved in Cd-elicited cerebral damage in the chicken. Synopsis for the graphical abstract Cadmium (Cd)-induced neuronal damage triggers the heat shock response (HSR) by activating heat shock transcription factors (HSFs) and subsequent induction of major heat shock proteins (notably, HSP60, HSP70, and HSP90). Moreover, Cd exposure activates caspase-1, caspase-8, caspase-3, and p53 protein, thereby resulting in neuronal apoptosis in the chicken brain.


Assuntos
Cádmio , Proteína Supressora de Tumor p53 , Animais , Fatores de Transcrição de Choque Térmico , Cádmio/toxicidade , Cádmio/metabolismo , Caspase 3/metabolismo , Caspase 8 , Galinhas/metabolismo , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico/genética , Proteínas de Choque Térmico HSP70/metabolismo , RNA Mensageiro
13.
Environ Sci Pollut Res Int ; 30(9): 22550-22559, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36301385

RESUMO

Cadmium (Cd) is a food contaminant that poses serious threats to animal health, including birds. It is also an air pollutant with well-known neurotoxic effects on humans. However, knowledge on the neurotoxic effects of chronic Cd exposure on chicken is limited. Thus, this study assessed the neurotoxic effects of chronic Cd on chicken cerebellum. Chicks were exposed to 0 (control), 35 (low), and 70 (high) mg/kg of Cd for 90 days, and the expression of genes related to the heat-shock response was investigated. The chickens showed clinical symptoms of ataxia, and histopathology revealed that Cd exposure decreased the number of Purkinje cells and induced degeneration of Purkinje cells with pyknosis, and some dendrites were missing. Moreover, Cd exposure increased the expression of heat-shock factors, HSF1, HSF2, and HSF3, and heat-shock proteins, HSP60, HSP70, HSP90, and HSP110. These changes indicate that HSPs improve the tolerance of the cerebellum to Cd. Conversely, the expressions of HSP10, HSP25, and HSP40 were decreased significantly, which indicated that Cd inhibits the expression of small heat-shock proteins. However, HSP27 and HSP47 were upregulated following low-dose Cd exposure, but downregulated under high-dose Cd exposure. This work sheds light on the toxic effects of Cd on the cerebellum, and it may provide evidence for health risks posed by Cd. Additionally, this work also identified a novel target of Cd exposure in that Cd induces cerebellar injury by disrupting the heat-shock response. Cd can be absorbed into chicken's cerebellum through the food chain, which eventually caused cerebellar injury. This study provided a new insight that chronic Cd-induced neurotoxicity in the cerebellum is associated with alterations in heat-shock response-related genes, which indicated that Cd through disturbing heat-shock response induced cerebellar injury.


Assuntos
Cádmio , Galinhas , Humanos , Animais , Cádmio/toxicidade , Resposta ao Choque Térmico , Proteínas de Choque Térmico HSP70 , Cerebelo
14.
Environ Pollut ; 324: 121400, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36878275

RESUMO

Cadmium (Cd) is a non-biodegradable widespread environmental pollutant, which can cross the blood-brain barrier (BBB) and cause cerebral toxicity. However, the effect of Cd on the BBB is still unclear. In this study, a total of 80 (1-day-old) Hy-Line white variety chicks (20 chickens/group) were selected and randomly divided into four (4) groups: the control group (Con group) (fed with a basic diet, n = 20), the Cd 35 group (basic diet with 35 mg/kg CdCl2, n = 20), the Cd 70 group (basic diet with 70 mg/kg CdCl2, n = 20) and the Cd 140 group (basic diet with 140 mg/kg CdCl2, n = 20), and fed for 90 days. The pathological changes, factors associated with the BBB, oxidation level and the levels of Wingless-type MMTV integration site family, member 7 A (Wnt7A)/Wnt receptor Frizzled 4 (FZD4)/ß-catenin signaling axis-related proteins in brain tissue were detected. Cd exposure induced capillary damage and neuronal swelling, degeneration and loss of neurons. Gene Set Enrichment Analysis (GSEA) showed the weakened Wnt/ß-catenin signaling axis. The protein expression of the Wnt7A, FZD4, and ß-catenin was decreased by Cd expusure. Inflammation generation and BBB dysfunction were induced by Cd, as manifested by impaired tight junctions (TJs) and adherens junctions (AJs) formation. These findings underscore that Cd induced BBB dysfunction via disturbing Wnt7A/FZD4/ß-catenin signaling axis.


Assuntos
Barreira Hematoencefálica , beta Catenina , Animais , Barreira Hematoencefálica/fisiologia , beta Catenina/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Galinhas/metabolismo , Via de Sinalização Wnt/genética
15.
Front Pharmacol ; 13: 829759, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814226

RESUMO

Abemaciclib is a cyclin-dependent kinases 4/6 (CDK4/6) inhibitor approved for the treatment of metastatic breast cancer. Preclinical studies suggest that abemaciclib has the potential for lung cancer treatment. However, several clinical trials demonstrate that monotherapy with abemaciclib has no obvious superiority than erlotinib to treat lung cancer patients, limiting its therapeutic options for lung cancer treatment. Here, we show that the US Food and Drug Administration (FDA)-approved drug, gilteritinib, enhances the cytotoxicity of abemaciclib through inducing apoptosis and senescence in lung cancer cells. Interestingly, abemaciclib in combination with gilteritinib leads to excessive accumulation of vacuoles in lung cancer cells. Mechanistically, combined abemaciclib and gilteritinib induces complete inactivation of AKT and retinoblastoma (Rb) pathways in lung cancer cells. In addition, RNA-sequencing data demonstrate that combination of abemaciclib and gilteritinib treatment induces G2 phase cell-cycle arrest, inhibits DNA replication, and leads to reduction in homologous recombination associated gene expressions. Of note, abemaciclib-resistant lung cancer cells are more sensitive to gilteritinib treatment. In a mouse xenograft model, combined abemaciclib and gilteritinib is more effective than either drug alone in suppressing tumor growth and appears to be well tolerated. Together, our findings support the combination of abemaciclib with gilteritinib as an effective strategy for the treatment of lung cancer, suggesting further evaluation of their efficacy is needed in a clinical trial.

16.
J Inorg Biochem ; 227: 111682, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34902763

RESUMO

Cadmium (Cd) is a toxic heavy metal of considerable toxicity, possessing a serious environmental problem that threatening food safety and human health. However, the underlying mechanisms of Cd-induced nephrotoxicity and detoxification response remain largely unclear. Cd was administered at doses of 35, 70, and 140 mg/kg diet with feed for 90 days and produced potential damage to chickens' kidneys. The results showed that Cd exposure induced renal anatomical and histopathological injuries. Cd exposure up-regulated cytochrome P450 enzymes (CYP450s), activated nuclear xenobiotic receptors (NXRs) response, including aryl hydro-carbon receptor (AHR), constitutive androstane receptor (CAR), and pregnane X receptor (PXR) by low and moderate doses of Cd, and induced an increase in CYP isoforms expression. Cd exposure down-regulated phase II detoxification enzymes (glutathione-S-transferase (GST), glutathione peroxidase (GSH-PX) activities, and glutathione (GSH) content), and GST isoforms transcription . Furthermore, ATP-binding cassette (ABC) transporters, multidrug resistance protein (MRP1), and P-glycoprotein (P-GP) levels were elevated by low dose, but high dose inhibited the P-GP expression. Activation of detoxification enzymes lost their ability of resistance as increasing dose of Cd, afterwards brought into severe renal injury. Additionally, Cd suppressed focal adhesion kinase (Fak) and integrins protein expression as well as activated extrinsic pathway and intrinsic pathways, thereby producing anoikis. In conclusion, these results indicated that Cd induced Fak-mediated anoikis activation in the kidney via nuclear receptors (AHR/CAR/PXR)-mediated xenobiotic detoxification pathway.


Assuntos
Anoikis/efeitos dos fármacos , Proteínas Aviárias/metabolismo , Cádmio/toxicidade , Receptor Constitutivo de Androstano/metabolismo , Quinase 2 de Adesão Focal/metabolismo , Rim/metabolismo , Receptor de Pregnano X/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Galinhas , Masculino
17.
Environ Pollut ; 292(Pt B): 118390, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34699919

RESUMO

Di (2-ethylhexyl) phthalate (DEHP) is a hazardous chemical which is used as a plasticizer in the plastic products. Lycopene (LYC) is a carotenoid that has protective roles against cellular damage in different organs. The present study sought to explore the role of the interaction between mitophagy and mitochondrial unfolded protein response (UPRmt) in the LYC mitigating DEHP-induced hepatic mitochondrial quality control disorder. The mice were treated with LYC (5 mg/kg) and/or DEHP (500 or 1000 mg/kg). In our findings, LYC prevented DEHP-induced histopathological alterations including steatosis and fibrosis, and ultrastructural injuries including decreased mitochondrial membrane potential (ΔΨm) and mitochondria volume density. Furthermore, LYC alleviated DEHP-induced mitochondrial biogenesis disorder by suppressing SIRT1-PGC-1α axis, PINK1-mediated mitophagy and the activation of mitochondrial unfolded protein response (UPRmt). This research suggested that LYC could prevent DEHP-induced hepatic mitochondrial quality control disorder via regulating SIRT1/PINK1/mitophagy axis and UPRmt. The present study provided a current understanding about the potential implication of the SIRT1/PINK1/mitophagy axis and UPRmt in LYC preventing DEHP-induced hepatic mitochondrial quality control disorder.


Assuntos
Dietilexilftalato , Mitofagia , Animais , Dietilexilftalato/toxicidade , Licopeno , Camundongos , Proteínas Quinases , Sirtuína 1 , Resposta a Proteínas não Dobradas
18.
J Inorg Biochem ; 234: 111882, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35752064

RESUMO

Cadmium (Cd) is a widely used heavy metal which is reported to exert extensive harm to the environment and human health. Owing to Cd being an element it is continuously enriched in the environment. The mechanism of splenic toxicity by Cd, however, is not yet clear. In order to explore the toxic mechanism of Cd exposure to the spleen, we added 0, 35, 70 and 140 mg/kg of Cd to the diet of chicken and fed them this diet for 90 days. Analysis of histopathological sections showed that Cd exposure damaged the spleen structure, the spleen red pulp, the white pulp boundary disappeared and the number of lymphocytes decreased significantly, suggesting that Cd exposure leads to organ injury to the spleen. Particularly, Cd-induced anoikis - a special form of programmed cell death caused by the loss of contact between cells and extracellular matrix and other cells - is associated with integrin-related cell detachment and activation of apoptotic signaling pathways. Moreover, Cd exposure leads to an increase in free radicals content and affects the activity of antioxidant enzymes resulting in oxidative stress. Simultaneously, Cd activated the body's antioxidant defense system mediated by the Nuclear factor related factor 2 (Nrf2) signaling pathway. Based on our results Cd-induced splenic lymphocytes anoikis is not mitigated by Nrf2-mediated antioxidative defense response.


Assuntos
Antioxidantes , Cádmio , Anoikis , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Cádmio/metabolismo , Cádmio/toxicidade , Linfócitos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Baço
19.
J Agric Food Chem ; 70(32): 10022-10030, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35917506

RESUMO

Lycopene (Lyc) has anti-inflammatory and antioxidant biological functions. Di-2-ethylhexyl phthalate (DEHP) is an extremely harmful and persistent environmental pollutant and is a threat to animal health. The toll-like receptor (TLR)/MyD88 pathway is an important pathway in the inflammatory response. To illustrate the potential antagonistic action of Lyc against DEHP by the TLR/MyD88 pathway, 140 ICR mice were randomly assigned groups and continuously gavaged with corn oil, distilled water, different DEHP concentrations (500 or 1000 mg/kg BW/day), and/or Lyc (5 mg/kg BW/day) for 28 days. The data show that Lyc effectively attenuates the DEHP-induced activation of the TLR/MyD88 pathway, the upregulation of JNK expression, the content of IL-6 and TNF-α, and the downregulation of the IL-10 content, which eventually inhibit the inflammatory response and mitochondrial injuries. These findings underline the TLR/MyD88 pathway as a potential therapeutic target in DEHP and Lyc as a new therapeutic method to inhibit DEHP toxicity.


Assuntos
Dietilexilftalato , Proteínas Adaptadoras de Transdução de Sinal , Animais , Dietilexilftalato/toxicidade , Licopeno , Camundongos , Camundongos Endogâmicos ICR , Fator 88 de Diferenciação Mieloide/genética , Ácidos Ftálicos , Receptores Toll-Like/genética
20.
Anim Nutr ; 11: 402-412, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36382201

RESUMO

This study aims to investigate the role of metal regulatory transcription factor 1 (MTF1)-mediated metal response in cadmium (Cd)-induced cerebellar injury, and to evaluate the antagonistic effects of nano-selenium (Nano-Se) against Cd toxicity. A total of 80 chicks (1 d old, male, Hy-Line Variety White) were randomly allocated to 4 treatment groups for 3 months: the control group (fed with a basic diet, n = 20), the Nano-Se group (basic diet with 1 mg/kg nano-Se 1 mg/kg Nano-Se in basic diet, n = 20), the Nano-Se + Cd group (basic diet with 1 mg/kg Nano-Se and 140 mg/kg CdCl2, n = 20) and the Cd group (basic diet with 140 mg/kg CdCl2 , n = 20). The results of the experiment showed that the Purkinje cells were significantly decreased with their degradation and indistinct nucleoli after Cd exposure. Moreover, exposure to Cd caused a significant accumulation of Cd and cupper. However, the contents of Se, iron, and zinc were decreased, thereby disturbing the metal homeostasis in the cerebellum. The Cd exposure also resulted in high levels of malondialdehyde (MDA) and down regulation of selenoprotein transcriptome. Furthermore, the expressions of MTF1, metallothionein 1 (MT1), MT2, zinc transporter 3 (ZNT3), ZNT5, ZNT10, zrt, irt-like protein 8 (ZIP8), ZIP10, transferrin (TF), ferroportin 1 (FPN1), ATPase copper transporting beta (ATP7B), and copper uptake protein 1 (CTR1) were inhibited by Cd exposure. However, all these changes were significantly alleviated by the supplementation of Nano-Se. This study proved that Cd could disorder metal homeostasis and induce oxidative stress, whereas Nano-Se could relieve all these negative effects caused by Cd via activating the MTF1-mediated metal response in the cerebellum of chicken.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA