RESUMO
Chitinases are enzymes that digest the polysaccharide polymer chitin. During insect development, breakdown of chitin is an essential step in molting of the exoskeleton. Knockdown of chitinases required for molting is lethal to insects, making chitinase genes an interesting target for RNAi-based pest control methods. The Asian citrus psyllid, Diaphorina citri, carries the bacterium causing Huanglongbing, or citrus greening disease, a devastating citrus disease. We identified and annotated 12 chitinase family genes from D. citri as part of a community effort to create high-quality gene models to aid the design of interdictory molecules for pest control. We categorized the D. citri chitinases according to an established classification scheme and re-evaluated the classification of chitinases in other hemipterans. In addition to chitinases from known groups, we identified a novel class of chitinases present in D. citri and several related hemipterans that appears to be the result of horizontal gene transfer.
RESUMO
Citrus greening disease is caused by the pathogen Candidatus Liberibacter asiaticus and transmitted by the Asian citrus psyllid, Diaphorina citri. No curative treatment or significant prevention mechanism exists for this disease, which causes economic losses from reduced citrus production. A high-quality genome of D. citri is being manually annotated to provide accurate gene models to identify novel control targets and increase understanding of this pest. Here, we annotated 25 D. citri genes involved in glycolysis and gluconeogenesis, and seven in trehaloneogenesis. Comparative analysis showed that glycolysis genes in D. citri are highly conserved but copy numbers vary. Analysis of expression levels revealed upregulation of several enzymes in the glycolysis pathway in the thorax, consistent with the primary use of glucose by thoracic flight muscles. Manually annotating these core metabolic pathways provides accurate genomic foundation for developing gene-targeting therapeutics to control D. citri.
RESUMO
The polysaccharide chitin is critical for the formation of many insect structures, including the exoskeleton, and is required for normal development. Here we report the annotation of three genes from the chitin synthesis pathway in the Asian citrus psyllid, Diaphorina citri (Hemiptera: Liviidae), the vector of Huanglongbing (citrus greening disease). Most insects have two chitin synthase (CHS) genes but, like other hemipterans, D. citri has only one. In contrast, D. citri is unusual among insects in having two UDP-N-acetylglucosamine pyrophosphorylase (UAP) genes. One of the D. citri UAP genes is broadly expressed, while the other is expressed predominantly in males. Our work helps pave the way for potential utilization of these genes as pest control targets to reduce the spread of Huanglongbing.
RESUMO
Chitin deacetylases (CDAs) are one of the least understood components of insect chitin metabolism. The partial deacetylation of chitin polymers appears to be important for the proper formation of higher order chitin structures, such as long fibers and bundles, which contribute to the integrity of the insect exoskeleton and other structures. Some CDAs may also be involved in bacterial defense. Here, we report the manual annotation of four CDA genes from the Asian citrus psyllid, Diaphorina citri, laying the groundwork for future study of these genes.