RESUMO
Envenomation by Loxosceles spiders can result in local and systemic pathologies. Systemic loxoscelism, which can lead to death, is characterized by intravascular hemolysis, platelet aggregation, and acute kidney injury. Sphingomyelinase D (SMase D) in Loxosceles spider venom is responsible for both local and systemic pathologies, and has been shown to induce metalloprotease activity. As the complement system is involved in many renal pathologies and is involved in hemolysis in systemic loxoscelism, the aim of this study was to investigate its role and the role of complement regulators and metalloproteases in an in vitro model of Loxosceles venom induced renal pathology. We investigated the effects of the venom/SMase D and the complement system on the HK-2 kidney cell line. Using cell viability assays, western blotting, and flow cytometry, we show that human serum, as a source of complement, enhanced the venom/SMase D induced cell death and the deposition of complement components and properdin. Inhibitors for ADAM-10 and ADAM-17 prevented the venom induced release of the of the complement regulator MCP/CD46 and reduced the venom/SMase D induced cell death. Our results show that the complement system can contribute to Loxosceles venom induced renal pathology. We therefore suggest that patients experiencing systemic loxoscelism may benefit from treatment with metalloproteinase inhibitors and complement inhibitors, but this proposition should be further analyzed in future pre-clinical and clinical assays.
Assuntos
Esfingomielina Fosfodiesterase , Picada de Aranha , Venenos de Aranha , Humanos , Esfingomielina Fosfodiesterase/uso terapêutico , Diester Fosfórico Hidrolases/toxicidade , Rim , Morte CelularRESUMO
Sphingomyelinase D (SMase D), the main toxic component of Loxosceles venom, has a well-documented role on dermonecrotic lesion triggered by envenomation with these species; however, the intracellular mechanisms involved in this event are still poorly known. Through differential transcriptomics of human keratinocytes treated with L. laeta or L. intermedia SMases D, we identified 323 DEGs, common to both treatments, as well as upregulation of molecules involved in the IL-1 and ErbB signaling. Since these pathways are related to inflammation and wound healing, respectively, we investigated the relative expression of some molecules related to these pathways by RT-qPCR and observed different expression profiles over time. Although, after 24 h of treatment, both SMases D induced similar modulation of these pathways in keratinocytes, L. intermedia SMase D induced earlier modulation compared to L. laeta SMase D treatment. Positive expression correlations of the molecules involved in the IL-1 signaling were also observed after SMases D treatment, confirming their inflammatory action. In addition, we detected higher relative expression of the inhibitor of the ErbB signaling pathway, ERRFI1, and positive correlations between this molecule and pro-inflammatory mediators after SMases D treatment. Thus, herein, we describe the cell pathways related to the exacerbation of inflammation and to the failure of the wound healing, highlighting the contribution of the IL-1 signaling pathway and the ERRFI1 for the development of cutaneous loxoscelism.
Assuntos
Esfingomielina Fosfodiesterase , Venenos de Aranha , Animais , Humanos , Inflamação , Interleucina-1/metabolismo , Diester Fosfórico Hidrolases/toxicidade , Transdução de Sinais , Esfingomielina Fosfodiesterase/metabolismo , Aranhas/química , Aranhas/metabolismo , Venenos de Aranha/toxicidade , Picada de Aranha/patologia , Receptores ErbB/metabolismoRESUMO
The dysregulation of complement system activation usually results in acute or chronic inflammation and can contribute to the development of various diseases. Although the activation of complement pathways is essential for innate defense, exacerbated activity of this system may be harmful to the host. Thus, drugs with the potential to inhibit the activation of the complement system may be important tools in therapy for diseases associated with complement system activation. The synthetic peptides Cp40 and PMX205 can be highlighted in this regard, given that they selectively inhibit the C3 and block the C5a receptor (C5aR1), respectively. The zebrafish (Danio rerio) is a robust model for studying the complement system. The aim of the present study was to use in silico computational modeling to investigate the hypothesis that these complement system inhibitor peptides interact with their target molecules in zebrafish, for subsequent in vivo validation. For this, we analyzed molecular docking interactions between peptides and target molecules. Our study demonstrated that Cp40 and the cyclic peptide PMX205 have positive interactions with their respective zebrafish targets, thus suggesting that zebrafish can be used as an animal model for therapeutic studies on these inhibitors.
Assuntos
Ativação do Complemento , Peixe-Zebra , Animais , Simulação de Acoplamento Molecular , Simulação por Computador , Inativadores do Complemento/farmacologiaRESUMO
The systemic increase in inflammatory mediator levels can induce diverse pathological disorders, including potentially thrombus formation, which may be lethal. Among the clinical conditions in which the formation of thrombi dictates the patient's prognosis, envenomation by Bothrops lanceolatus should be emphasized, as it can evolve to stroke, myocardial infarction and pulmonary embolism. Despite their life-threatening potential, the immunopathological events and toxins involved in these reactions remain poorly explored. Therefore, in the present study, we examined the immunopathological events triggered by a PLA2 purified from B. lanceolatus venom, using an ex vivo human blood model of inflammation. Our results showed that the purified PLA2 from the venom of B. lanceolatus damages human erythrocytes in a dose dependent way. The cell injury was associated with a decrease in the levels of CD55 and CD59 complement regulators on the cell surface. Moreover, the generation of anaphylatoxins (C3a and C5a) and the soluble terminal complement complex (sTCC) indicates that human blood exposure to the toxin activates the complement system. Increased production of TNF-α, CXCL8, CCL2 and CCL5 followed complement activation. The venom PLA2 also triggered the generation of lipid mediators, as evidenced by the detected high levels of LTB4, PGE2 and TXB2. The scenario here observed of red blood cell damage, dysfunctions of the complement regulatory proteins, accompanied by an inflammatory mediator storm, suggests that B. lanceolatus venom PLA2 contributes to the thrombotic disorders present in the envenomed individuals.
Assuntos
Bothrops , Mordeduras de Serpentes , Toxinas Biológicas , Animais , Humanos , Proteínas do Sistema Complemento , Fosfolipases A2 , Venenos de Serpentes/toxicidadeRESUMO
The caterpillar of the Premolis semirufa moth, commonly called Pararama, is found in the Brazilian Amazon region. Contact with the hairs can cause a chronic inflammatory reaction, termed "pararamosis". To date, there is still no specific treatment for pararamosis. In this study, we used a whole human blood model to evaluate the involvement of the complement in the proinflammatory effects of P. semirufa hair extract, as well as the anti-inflammatory potential of complement inhibitors in this process. After treatment of blood samples with the P. semirufa hair extract, there was a significant increase in the generation of soluble terminal complement complex (sTCC) and anaphylatoxins (C3a, C4a, and C5a), as well as the production of the cytokines TNF-α and IL-17 and the chemokines IL-8, RANTES, MIG, MCP-1, and IP-10. The inhibition of C3 with compstatin significantly decreased IL-17, IL-8, RANTES, and MCP-1 production. However, the use of the C5aR1 antagonist PMX205 promoted a reduction in the production of IL-8 and RANTES. Moreover, compstatin decreased CD11b, C5aR1, and TLR2 expression induced by P. semirufa hair extract in granulocytes and CD11b, TLR4, and TLR2 in monocytes. When we incubated vascular endothelial cells with extract-treated human plasma, there was an increase in IL-8 and MCP-1 production, and compstatin was able to decrease the production of these chemokines. C5aR1 antagonism also decreased the production of MCP-1 in endothelial cells. Thus, these results indicate that the extract of the Pararama bristles activates the complement system and that this action contributes to the production of cytokines and chemokines, modulation of the expression of surface markers in leukocytes, and activation of endothelial cells.
Assuntos
Mariposas , Animais , Humanos , Mariposas/metabolismo , Interleucina-17/efeitos adversos , Peçonhas , Interleucina-8 , Células Endoteliais/metabolismo , Floresta Úmida , Receptor 2 Toll-Like , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente , Proteínas do Sistema Complemento , QuimiocinasRESUMO
Systemic increased inflammatory mediators' levels are a hallmark in a plethora of pathological conditions, including thrombotic diseases as the envenomation by Bothrops lanceolatus snake. Multiple organ infarctions, which are not prevented by anticoagulant therapy, are the main cause of death on this envenomation. However, the potential mechanisms involved in these systemic reactions are underexplored. This study aimed to explore the potential systemic events which could contribute to thrombotic reactions on the envenomation by B. lanceolatus in an ex vivo human whole-blood model. B. lanceolatus venom elicited an inflammatory reaction, which was characterized by a strong complement activation, since we detected high C3a, C4a and C5a anaphylatoxins levels. Besides, the venom promoted soluble Terminal Complement Complex (sTCC) assembly. Complement activation was accompanied by intense lipid mediators' release, which included LTB4, PGE2 and TXB2. In addition, in the blood exposed to B. lanceolatus venom, we detected IL-1ß, IL-6 and TNF-α interleukins production. Chemokines, including CCL2, CCL5 and CXCL8 were upregulated in the venom presence. These outcomes show that B. lanceolatus venom causes a strong inflammatory reaction in the blood favoring a potential setting to thrombi formation. Thus, inhibiting inflammatory mediators or their receptors may help in the envenomed patients' management.
Assuntos
Bothrops , Venenos de Crotalídeos/toxicidade , Mediadores da Inflamação/metabolismo , Inflamação/etiologia , Animais , Humanos , Inflamação/patologia , Mediadores da Inflamação/sangue , Trombose/etiologia , Trombose/patologiaRESUMO
The spiders of the Loxosceles genus (called brown or violin spiders) are of medical relevance in several countries due to the many human envenomation cases reported. The main component of Loxosceles venom is the enzyme sphingomyelinase D (SMase D), which is responsible for the local and systemic effects induced by the whole venom. Here, we investigated the cytotoxic and genotoxic effects caused by Loxosceles laeta venom and SMase D on human keratinocytes to better understand the dermonecrosis development mechanism. Our findings indicate that whole venom, as well as SMase D, increases intracellular superoxide levels, leading to DNA damage. These effects appear to be dependent on the binding of SMase D to the cell surface, although the complete pathway triggered as a result of the binding still needs to be elucidated. Moreover, after SMase D treatment, we observed the presence of histone γH2AX, suggesting that the cells are undergoing DNA repair. Moreover, when ATR kinase was inhibited, the cell viability of human keratinocytes was decreased. Together, our findings strongly suggest that L. laeta venom, as well as SMase D, increases intracellular superoxide levels, leading to DNA damage in human keratinocytes. Additionally, the induced DNA damage is repaired through the activation of an apparent ATR-mediated DNA-damage response. This knowledge may contribute to a better understanding of the behaviour of human keratinocytes during cutaneous loxoscelism, a condition that affects thousands of people around the world.
Assuntos
Dano ao DNA/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Diester Fosfórico Hidrolases/toxicidade , Venenos de Aranha/toxicidade , Superóxidos/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Sobrevivência Celular , Células HaCaT , Histonas/metabolismo , Humanos , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/metabolismo , Aranhas/enzimologia , Superóxidos/análiseRESUMO
The genus Loxosceles comprises 140 species widely distributed around the world. These spiders are nocturnal, sedentary and remarkably nonaggressive, although they cause accidents in humans with wide degrees of severity, generating signs and symptoms that define the clinical condition known as loxoscelism. Its local signs and symptoms were first reported in 1872, and over the years, a large medical literature has been accumulated; unfortunately, it is not always trustworthy. Assessing the reliability of such information, we reviewed 120 case reports of loxoscelism published in 84 articles over the past 20 years. This search allowed us to gather information on the clinical aspects, diagnosis and treatment of loxoscelism, showing that the severity of these accidents has multiple degrees and that it is influenced by many factors. Thus, coupled with epidemiological and species occurrence information, this study can be a useful tool for the clinical practice of loxoscelism. It may support and provide a multidisciplinary view that should be taken into consideration when establishing the therapeutic approach in cases of Loxosceles envenomation.
Assuntos
Picada de Aranha/diagnóstico , Aranhas , Animais , Humanos , Diester Fosfórico Hidrolases , Reprodutibilidade dos Testes , Picada de Aranha/epidemiologia , Picada de Aranha/terapiaRESUMO
P-MAPA is a complex compound, derived from Aspergillus oryzae cultures, that has shown immunomodulatory properties in infection and cancer animal models. Despite promising results in these models, the mechanisms of cellular activation by P-MAPA, suggested to be Toll-like receptor- (TLR-) dependent, and its effect on human immune cells, remain unclear. Using an ex vivo model of human whole blood, the effects of P-MAPA on complement system activation, production of cytokines, and the expression of complement receptors (CD11b, C5aR, and C3aR), TLR2, TLR4, and the coreceptor CD14 were analyzed in neutrophils and monocytes. P-MAPA induced complement activation in human blood, detected by increased levels of C3a, C5a, and SC5b-9 in plasma. As a consequence, CD11b expression increased and C5aR decreased upon activation, while C3aR expression remained unchanged in leukocytes. TLR2 and TLR4 expressions were not modulated by P-MAPA treatment on neutrophils, but TLR4 expression was reduced in monocytes, while CD14 expression increased in both cell types. P-MAPA also induced the production of TNF-α, IL-8, and IL-12 and oxidative burst, measured by peroxynitrite levels, in human leukocytes. Complement inhibition with compstatin showed that P-MAPA-induced complement activation drives modulation of C5aR, but not of CD11b, suggesting that P-MAPA acts through both complement-dependent and complement-independent mechanisms. Compstatin also significantly reduced the peroxynitrite generation. Altogether, our results show that P-MAPA induced proinflammatory response in human leukocytes, which is partially mediated by complement activation. Our data contribute to elucidate the complement-dependent and complement-independent mechanisms of P-MAPA, which ultimately result in immune cell activation and in its immunomodulatory properties in infection and cancer animal models.
Assuntos
Fatores Imunológicos/farmacologia , Inflamação/tratamento farmacológico , Ácidos Linoleicos/farmacologia , Ácidos Oleicos/farmacologia , Ativação do Complemento , Citocinas/metabolismo , Humanos , Técnicas In Vitro , Leucócitos/citologia , Leucócitos/metabolismo , Ativação Linfocitária , Monócitos/citologia , Neutrófilos/metabolismo , Estresse Oxidativo , Peptídeos Cíclicos/farmacologia , Ácido Peroxinitroso/metabolismo , Espécies Reativas de Nitrogênio , Espécies Reativas de Oxigênio , Superóxidos , Receptores Toll-Like/metabolismoRESUMO
Loxosceles spiders' venoms consist of a mixture of proteins, including the sphingomyelinases D (SMases D), which are the main toxic components responsible for local and systemic effects in human envenomation. Herein, based on the structural information of SMase D from Loxosceles laeta spider venom and virtual docking-based screening approach, three benzene sulphonate compounds (named 1, 5 and 6) were identified as potential Loxosceles SMase D inhibitors. All compounds inhibited the hydrolysis of the sphingomyelin substrate by both recombinant and native SMases D. Compounds 5 and 6 acted as SMases D uncompetitive inhibitors with Ki values of 0.49 µM and 0.59 µM, respectively. Compound 1 is a mixed type inhibitor, and presented a Ki value of 0.54 µM. In addition, the three compounds inhibited the binding of SMases D to human erythrocytes and the removal of glycophorin C from the cell surface, which are important events in the complement-dependent haemolysis induced by Loxosceles venom. Moreover, compounds 5 and 6 reduced the binding of SMases to human keratinocytes membrane and the venom induced cell death. Importantly, compounds 5 and 6 also controlled the development of the necrotic lesion in an in vivo model of loxoscelism. Together, our findings indicate that the novel SMase D inhibitors presented here are able to suppress both local and systemic reactions induced by Loxosceles venoms. Since the number of Loxosceles envenomation accidents is currently growing worldwide, our results indicate that both inhibitors are promising scaffolds for the rational design of new drugs targeting SMases D from these spiders.
Assuntos
Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Dermatopatias/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/farmacologia , Picada de Aranha/tratamento farmacológico , Animais , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Humanos , Estrutura Molecular , Inibidores de Fosfodiesterase/síntese química , Inibidores de Fosfodiesterase/química , Coelhos , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , AranhasRESUMO
BACKGROUND: The snakes from the Bitis genus are some of the most medically important venomous snakes in sub Saharan Africa, however little is known about the composition and effects of these snake venom peptides. Considering that the victims with Bitis genus snakes have exacerbate hypotension and cardiovascular disorders, we investigated here the presence of angiotensin-converting enzyme modulators on four different species of venoms. METHODS: The peptide fractions from Bitis gabonica gabonica, Bitis nasicornis, Bitis gabonica rhinoceros and Bitis arietans which showed inhibitory activity on angiotensin-converting enzyme were subjected to mass spectrometry analysis. Eight proline-rich peptides were synthetized and their potencies were evaluated in vitro and in vivo. RESULTS: The MS analysis resulted in over 150 sequences, out of which 32 are new proline-rich oligopeptides, and eight were selected for syntheses. For some peptides, inhibition assays showed inhibitory potentials of cleavage of angiotensin I ten times greater when compared to bradykinin. In vivo tests showed that all peptides decreased mean arterial pressure, followed by tachycardia in 6 out of 8 of the tests. CONCLUSION: We describe here some new and already known proline-rich peptides, also known as bradykinin-potentiating peptides. Four synthetic peptides indicated a preferential inhibition of angiotensin-converting enzyme C-domain. In vivo studies show that the proline-rich oligopeptides are hypotensive molecules. GENERAL SIGNIFICANCE: Although proline-rich oligopeptides are known molecules, we present here 32 new sequences that are inhibitors of the angiotensin-converting enzyme and consistent with the symptoms of the victims of Bitis spp, who display severe hypotension.
Assuntos
Inibidores da Enzima Conversora de Angiotensina/toxicidade , Pressão Arterial/efeitos dos fármacos , Hipotensão/induzido quimicamente , Oligopeptídeos/toxicidade , Venenos de Víboras/toxicidade , Inibidores da Enzima Conversora de Angiotensina/síntese química , Inibidores da Enzima Conversora de Angiotensina/isolamento & purificação , Animais , Cromatografia Líquida de Alta Pressão , Transferência Ressonante de Energia de Fluorescência , Frequência Cardíaca/efeitos dos fármacos , Hipotensão/fisiopatologia , Masculino , Oligopeptídeos/síntese química , Oligopeptídeos/isolamento & purificação , Prolina , Ratos Wistar , Sistema Renina-Angiotensina/efeitos dos fármacos , Taquicardia/induzido quimicamente , Taquicardia/fisiopatologia , Espectrometria de Massas em Tandem , Venenos de Víboras/químicaRESUMO
Neutrophil dysfunction, resulting in inefficient bacterial clearance, is a feature of several serious medical conditions, including cystic fibrosis (CF) and sepsis. Poorly controlled neutrophil serine protease (NSP) activity and complement activation have been implicated in this phenomenon. The capacity for excess NSP secretion and complement activation to influence the expression and function of the important neutrophil-activating receptor C5aR was investigated. Purified NSPs cathepsin G (CG), neutrophil elastase (NE), and proteinase 3 cleaved C5aR to a 26- to 27-kDa membrane-bound fragment, thereby inactivating its C5a-induced signaling ability. In a supernatant transfer assay, NSPs released from neutrophils in response to C5a induced the cleavage of the C5aR on unstimulated cells. Stimulation of myeolomonocytic U937 cells and purified neutrophils with C5a resulted in downregulation of the C5aR on these cells, which, in the case of U937 cells, was largely caused by NSP-mediated cleavage of C5aR, but in the case of neutrophils, intracellular degradation was likely the main mediator in addition to a small role for NSPs. CG and NE in bronchoalveolar lavage fluid from CF patients both contributed to C5aR cleavage. We propose two converging models for C5a- and NSP-mediated neutrophil dysfunction whereby C5aR cleavage is induced by NSPs, secreted in response to: 1) excess C5a generation or other stimuli; or 2) necrosis. The consequent impairment of C5aR activity contributes to suboptimal local neutrophil priming and bacterial clearance. NSP inhibitors with specificity for both CG and NE may aid the treatment of pathologies associated with neutrophil dysfunction including sepsis and CF.
Assuntos
Ativação do Complemento/imunologia , Neutrófilos/imunologia , Receptor da Anafilatoxina C5a/metabolismo , Serina Proteases/metabolismo , Líquido da Lavagem Broncoalveolar/citologia , Catepsina G/metabolismo , Linhagem Celular , Criança , Humanos , Elastase de Leucócito/metabolismo , Mieloblastina/metabolismo , Ativação de Neutrófilo/imunologia , Transdução de Sinais/imunologia , Células U937RESUMO
Due to its physicochemical properties, nanostructured mesoporous SBA-15 silica shows great potential as a vaccine adjuvant. This study evaluated the capacity of SBA-15 to encapsulate/adsorb the recombinant purified HBsAg from the Hepatitis B virus and the immunoresponsiveness of mice orally immunized with HBsAg inside SBA-15. A simulation of small angle X-ray scattering experimental results, together with the nitrogen adsorption isotherms data, allowed to determine the appropriate mass ratio of HBsAg:SBA-15, indicating antigen encapsulation into SBA-15 macroporosity. This was also evaluated by bicinchoninic acid assay and gel electrophoresis. The recruitment of inflammatory cells, an increase in production of specific antibodies, and the non-influence of silica on TH1 or TH2 polarization were observed after oral immunization. Besides, SBA-15 enhanced the phagocytosis of ovalbumin by dendritic cells, an important key to prove how this adjuvant works. Thus, it seems clear that the nanostructured SBA-15 is an effective and safe adjuvant for oral immunizations.
Assuntos
Vacinas contra Hepatite B/administração & dosagem , Imunização/métodos , Dióxido de Silício , Animais , Antígenos de Superfície da Hepatite B , Camundongos , VacinaçãoRESUMO
BACKGROUND: Sphingomyelinase D is the main toxin present in the venom of Loxosceles spiders. Several isoforms present in these venoms can be structurally classified in two groups. Class I Sphingomyelinase D contains a single disulphide bridge and variable loop. Class II Sphingomyelinase D presents an additional intrachain disulphide bridge that links a flexible loop with a catalytic loop. These classes exhibit differences in their toxic potential. In this paper we address the distribution of the structural classes of SMase D within and among species of spiders and also their evolutionary origin by means of phylogenetic analyses. We also conducted tests to assess the action of natural selection in their evolution combined to structural modelling of the affected sites. RESULTS: The majority of the Class I enzymes belong to the same clade, which indicates a recent evolution from a single common ancestor. Positively selected sites are located on the catalytic interface, which contributes to a distinct surface charge distribution between the classes. Sites that may prevent the formation of an additional bridge were found in Class I enzymes. CONCLUSIONS: The evolution of Sphingomyelinase D has been driven by natural selection toward an increase in noxiousness, and this might help explain the toxic variation between classes.
Assuntos
Evolução Molecular , Diester Fosfórico Hidrolases/genética , Venenos de Aranha/enzimologia , Aranhas/classificação , Aranhas/genética , Animais , Modelos Moleculares , Diester Fosfórico Hidrolases/química , Filogenia , Seleção Genética , Venenos de Aranha/genética , Aranhas/enzimologiaRESUMO
Most anti-inflammatory drugs currently adopted to treat chronic inflammatory joint diseases can alleviate symptoms but they do not lead to remission. Therefore, new and more efficient drugs are needed to block the course of joint inflammatory diseases. Animal venoms, rich in bioactive compounds, can contribute as valuable tools in this field of research. In this study, we first demonstrate the direct action of venoms on cells that constitute the articular joints. We established a platform consisting of cell-based assays to evaluate the release of cytokines (IL-6, IL-8, TNFα, IL-1ß, and IL-10) by human chondrocytes, synoviocytes and THP1 macrophages, as well as the release of neuropeptides (substance-P and ß-endorphin) by differentiated sensory neuron-like cells, 24 h after stimulation of cells with 21 animal venoms from snake and arthropod species, sourced from different taxonomic families and geographic origins. Results demonstrated that at non-cytotoxic concentrations, the venoms activate at varying degrees the secretion of inflammatory mediators involved in the pathology of articular diseases, such as IL-6, IL-8, and TNF-α by chondrocytes, synoviocytes, and macrophages and of substance P by neuron-like cells. Venoms of the Viperidae snake family were more inflammatory than those of the Elapidae family, while venoms of Arthropods were less inflammatory than snake venoms. Notably, some venoms also induced the release of the anti-inflammatory IL-10 by macrophages. However, the scorpion Buthus occitanus venom induced the release of IL-10 without increasing the release of inflammatory cytokines by macrophages. Since the cell types used in the experiments are crucial elements in joint inflammatory processes, the results of this work may guide future research on the activation of receptors and inflammatory signaling pathways by selected venoms in these particular cells, aiming at discovering new targets for therapeutic intervention.
Assuntos
Animais Peçonhentos , Venenos de Artrópodes , Artrópodes , Artropatias , Venenos de Escorpião , Escorpiões , Viperidae , Animais , Humanos , Interleucina-10 , Interleucina-6 , Interleucina-8 , Venenos de Serpentes/química , Citocinas , Fator de Necrose Tumoral alfa , Anti-InflamatóriosRESUMO
Snake venom enzymes have a broad range of molecular targets in plasma, tissues, and cells, among which hyaluronan (HA) is outstanding. HA is encountered in the extracellular matrix of diverse tissues and in the bloodstream, and its different chemical configurations dictate the diverse morphophysiological processes in which it participates. Hyaluronidases are highlighted among the enzymes involved in HA metabolism. This enzyme has been detected along the phylogenetic tree, suggesting that hyaluronidases exert multiple biological effects on different organisms. Hyaluronidases have been described in tissues, blood and snake venoms. Snake venom hyaluronidases (SVHYA) contribute to tissue destruction in envenomations and are called spreading factors since their action potentiates venom toxin delivery. Interestingly, SVHYA are clustered in Enzyme Class 3.2.1.35 together with mammalian hyaluronidases (HYAL). Both HYAL and SVHYA of Class 3.2.1.35 act upon HA, generating low molecular weight HA fragments (LMW-HA). LMW-HA generated by HYAL becomes a damage-associated molecular pattern that is recognized by Toll-like receptors 2 and 4, triggering cell signaling cascades culminating in innate and adaptive immune responses that are characterized by lipid mediator generation, interleukin production, chemokine upregulation, dendritic cell activation and T cell proliferation. In this review, aspects of the structures and functions of HA and hyaluronidases in both snake venoms and mammals are presented, and their activities are compared. In addition, the potential immunopathological consequences of HA degradation products generated after snakebite envenoming and their use as adjuvant to enhance venom toxin immunogenicity for antivenom production as well as envenomation prognostic biomarker are also discussed.
Assuntos
Hialuronoglucosaminidase , Toxinas Biológicas , Animais , Hialuronoglucosaminidase/metabolismo , Ácido Hialurônico/metabolismo , Filogenia , Venenos de Serpentes , Mamíferos/metabolismoRESUMO
BACKGROUND: The genus Micrurus, coral snakes (Serpentes, Elapidae), comprises more than 120 species and subspecies distributed from the south United States to the south of South America. Micrurus snake bites can cause death by muscle paralysis and further respiratory arrest within a few hours after envenomation. Clinical observations show mainly neurotoxic symptoms, although other biological activities have also been experimentally observed, including cardiotoxicity, hemolysis, edema and myotoxicity. RESULTS: In the present study we have investigated the action of venoms from seven species of snakes from the genus Micrurus on the complement system in in vitro studies. Several of the Micrurus species could consume the classical and/or the lectin pathways, but not the alternative pathway, and C3a, C4a and C5a were generated in sera treated with the venoms as result of this complement activation. Micrurus venoms were also able to directly cleave the α chain of the component C3, but not of the C4, which was inhibited by 1,10 Phenanthroline, suggesting the presence of a C3α chain specific metalloprotease in Micrurus spp venoms. Furthermore, complement activation was in part associated with the cleavage of C1-Inhibitor by protease(s) present in the venoms, which disrupts complement activation control. CONCLUSION: Micrurus venoms can activate the complement system, generating a significant amount of anaphylatoxins, which may assist due to their vasodilatory effects, to enhance the spreading of other venom components during the envenomation process.
Assuntos
Anafilatoxinas/biossíntese , Ativação do Complemento/efeitos dos fármacos , Venenos Elapídicos/farmacologia , Elapidae/metabolismo , Animais , Proteína Inibidora do Complemento C1/isolamento & purificação , Proteína Inibidora do Complemento C1/metabolismo , Complemento C3/metabolismo , Venenos Elapídicos/metabolismo , Humanos , Proteólise/efeitos dos fármacosRESUMO
The clinical manifestations of envenomation by Bothrops species are complex and characterized by prominent local effects that can progress to tissue loss, physical disability, or amputation. Systemic signs can also occur, such as hemorrhage, coagulopathy, shock, and acute kidney failure. The rapid development of local clinical manifestations is accompanied by the presence of mediators of the inflammatory process originating from tissues damaged by the bothropic venom. Considering the important role that the complement system plays in the inflammatory response, in this study, we analyzed the action of Bothrops jararaca snake venom on the complement system and cell surface receptors involved in innate immunity using an ex vivo human whole blood model. B. jararaca venom was able to induce activation of the complement system in the human whole blood model and promoted a significant increase in the production of anaphylatoxins C3a/C3a-desArg, C4a/C4a-desArg, C5a/C5a-desArg and sTCC. In leukocytes, the venom of B. jararaca reduced the expression of CD11b, CD14 and C5aR1. Inhibition of the C3 component by Cp40, an inhibitor of C3, resulted in a reduction of C3a/C3a-desArg, C5a/C5a-desArg and sTCC to basal levels in samples stimulated with the venom. Exposure to B. jararaca venom induced the production of inflammatory cytokines and chemokines such as TNF-α, IL-8/CXCL8, MCP-1/CCL2 and MIG/CXCL9 in the human whole blood model. Treatment with Cp40 promoted a significant reduction in the production of TNF-α, IL-8/CXCL8 and MCP-1/CCL2. C5aR1 inhibition with PMX205 also promoted a reduction of TNF-α and IL-8/CXCL8 to basal levels in the samples stimulated with venom. In conclusion, the data presented here suggest that the activation of the complement system promoted by the venom of the snake B. jararaca in the human whole blood model significantly contributes to the inflammatory process. The control of several inflammatory parameters using Cp40, an inhibitor of the C3 component, and PMX205, a C5aR1 antagonist, indicates that complement inhibition may represent a potential therapeutic tool in B. jararaca envenoming.
Assuntos
Bothrops , Venenos de Crotalídeos , Animais , Proteínas do Sistema Complemento , Humanos , Inflamação , Interleucina-8 , Fator de Necrose Tumoral alfaRESUMO
The new outbreak of coronavirus disease 2019 (COVID-19) has infected and caused the death of millions of people worldwide. Intensive efforts are underway around the world to establish effective treatments. Immunoglobulin from immunized animals or plasma from convalescent patients might constitute a specific treatment to guarantee the neutralization of the virus in the early stages of infection, especially in patients with risk factors and a high probability of progressing to severe disease. Worldwide, a few clinical trials using anti-SARS-CoV-2 immunoglobulins from horses immunized with the entire spike protein or fragments of it in the treatment of patients with COVID-19 are underway. Here, we describe the development of an anti-SARS-CoV-2 equine F(ab')2 immunoglobulin using a newly developed SARS-CoV-2 viral antigen that was purified and inactivated by radiation. Cell-based and preclinical assays showed that the F(ab')2 immunoglobulin successfully neutralizes the virus, is safe in animal models, and reduces the severity of the disease in a hamster model of SARS-CoV-2 infection and disease.