Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
BMC Bioinformatics ; 25(1): 64, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331751

RESUMO

Functional analysis of high throughput experiments using pathway analysis is now ubiquitous. Though powerful, these methods often produce thousands of redundant results owing to knowledgebase redundancies upstream. This scale of results hinders extensive exploration by biologists and can lead to investigator biases due to previous knowledge and expectations. To address this issue, we present vissE, a flexible network-based analysis and visualisation tool that organises information into semantic categories and provides various visualisation modules to characterise them with respect to the underlying data, thus providing a comprehensive view of the biological system. We demonstrate vissE's versatility by applying it to three different technologies: bulk, single-cell and spatial transcriptomics. Applying vissE to a factor analysis of a breast cancer spatial transcriptomic data, we identified stromal phenotypes that support tumour dissemination. Its adaptability allows vissE to enhance all existing gene-set enrichment and pathway analysis workflows, empowering biologists during molecular discovery.


Assuntos
Neoplasias da Mama , Perfilação da Expressão Gênica , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Transcriptoma , Fenótipo
2.
Immunol Cell Biol ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048134

RESUMO

Head and neck cancer (HNC) is the seventh most common cancer globally, resulting in 440 000 deaths per year. While there have been advancements in chemoradiotherapy and surgery, relapse occurs in more than half of HNCs, and these patients have a median survival of 10 months and a 2-year survival of < 20%. Only a subset of patients displays durable benefits from immunotherapies in metastatic and recurrent HNC, making it critical to understand the tumor microenvironment (TME) underpinning therapy responses in HNC. To recognize biological differences within the TME that may be predictive of immunotherapy response, we applied cutting-edge geospatial whole-transcriptome profiling (NanoString GeoMx Digital Spatial Profiler) and spatial proteomics profiling (Akoya PhenoCycler-Fusion) on a tumor microarray consisting of 25 cores from 12 patients that included 4 immunotherapy-unresponsive (8 cores) and 2 immunotherapy-responsive patients (5 cores), as well as 6 immunotherapy naïve patients (12 cores). Through high-plex, regional-based transcriptomic mapping of the tumor and TME, pathways involved with the complement system and hypoxia were identified to be differentially expressed in patients who went on to experience a poor immunotherapy response. Single-cell, targeted proteomic analysis found that immune cell infiltration of the cancer cell mass and interactions of CD8 T cells with tumor and other immune cells were associated with positive immunotherapy response. The relative abundance of specific tumor phenotypes and their interactions with various immune cells was identified to be different between response groups. This study demonstrates how spatial transcriptomics and proteomics can resolve novel alterations in the TME of HNC that may contribute to therapy sensitivity and resistance.

3.
J Transl Med ; 22(1): 677, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39049036

RESUMO

BACKGROUND: Recurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC) generally has a poor prognosis for patients with limited treatment options. While incorporating immune checkpoint inhibitors (ICIs) has now become the standard of care, the efficacy is variable, with only a subset of patients responding. The complexity of the tumor microenvironment (TME) and the role of tertiary lymphoid structures (TLS) have emerged as critical determinants for immunotherapeutic response. METHODS: In this study, we analyzed two independently collected R/M HNSCC patient tissue cohorts to better understand the role of TLS in response to ICIs. Utilizing a multi-omics approach, we first performed targeted proteomic profiling using the Nanostring GeoMx Digital Spatial Profiler to quantify immune-related protein expression with spatial resolution. This was further characterized by spatially resolved whole transcriptome profiling of TLSs and germinal centers (GCs). Deeper single-cell resolved proteomic profiling of the TLSs was performed using the Akoya Biosciences Phenocycler Fusion platform. RESULTS: Our proteomic analysis revealed the presence of T lymphocyte markers, including CD3, CD45, and CD8, expressing cells and upregulation of immune checkpoint marker PD-L1 within tumor compartments of patients responsive to ICIs, indicative of 'hot tumor' phenotypes. We also observed the presence of antigen-presenting cells marked by expression of CD40, CD68, CD11c, and CD163 with upregulation of antigen-presentation marker HLA-DR, in patients responding to ICIs. Transcriptome analysis of TLS and GCs uncovered a marked elevation in the expression of genes related to immune modulation, diverse immune cell recruitment, and a potent interferon response within the TLS structure. Notably, the distribution of TLS-tumor distance was found to be significantly different across response groups (H = 9.28, p = 0.026). The proximity of TLSs to tumor cells was found to be a critical indicator of ICI response, implying that patients with TLSs located further from tumor cells have worse outcomes. CONCLUSION: The study underscores the multifaceted role of TLSs in modulating the immunogenic landscape of the TME in R/M HNSCC, likely influencing the efficacy of ICIs. Spatially resolved multi-omics approaches offer valuable insights into potential biomarkers for ICI response and highlight the importance of profiling the TME complexity when developing therapeutic strategies and patient stratification.


Assuntos
Neoplasias de Cabeça e Pescoço , Imunoterapia , Estruturas Linfoides Terciárias , Microambiente Tumoral , Humanos , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/patologia , Estruturas Linfoides Terciárias/imunologia , Estruturas Linfoides Terciárias/patologia , Microambiente Tumoral/imunologia , Proteômica , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Masculino , Feminino , Resultado do Tratamento , Pessoa de Meia-Idade
4.
Genome Biol ; 25(1): 99, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637899

RESUMO

Spatial molecular data has transformed the study of disease microenvironments, though, larger datasets pose an analytics challenge prompting the direct adoption of single-cell RNA-sequencing tools including normalization methods. Here, we demonstrate that library size is associated with tissue structure and that normalizing these effects out using commonly applied scRNA-seq normalization methods will negatively affect spatial domain identification. Spatial data should not be specifically corrected for library size prior to analysis, and algorithms designed for scRNA-seq data should be adopted with caution.


Assuntos
Perfilação da Expressão Gênica , Análise de Célula Única , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Perfilação da Expressão Gênica/métodos , Algoritmos , Biologia
5.
bioRxiv ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38979239

RESUMO

Developing vaccines that promote CD8 + T cell memory is a challenge for infectious disease and cancer immunotherapy. TCF-1 + stem cell-like memory T (T SCM ) cells are important determinants of long-lived memory. Yet, the developmental requirements for T SCM formation are unclear. Here, we identify the temporal window for type I interferon (IFN-I) receptor (IFNAR) blockade to drive T SCM cell generation. T SCM cells were transcriptionally distinct and emerged from a transitional precursor of exhausted (T PEX ) cellular state concomitant with viral clearance. T SCM differentiation correlated with T cell retention within the lymph node paracortex, due to increased CXCR3 chemokine abundance which disrupted gradient formation. These affects were due a counterintuitive increase in IFNψ, which controlled cell location. Combining IFNAR inhibition with mRNA-LNP vaccination promoted specific T SCM differentiation and enhanced protection against chronic infection. These finding propose a new approach to vaccine design whereby modulation of inflammation promotes memory formation and function. HIGHLIGHTS: Early, transient inhibition of the type I interferon (IFN) receptor (IFNAR) during acute viral infection promotes stem cell-like memory T (T SCM ) cell differentiation without establishing chronic infection. T SCM and precursor of exhausted (T PEX ) cellular states are distinguished transcriptionally and by cell surface markers. Developmentally, T SCM cell differentiation occurs via a transition from a T PEX state coinciding with viral clearance. Transient IFNAR blockade increases IFNψ production to modulate the ligands of CXCR3 and couple T SCM differentiation to cell retention within the T cell paracortex of the lymph node. Specific promotion of T SCM cell differentiation with nucleoside-modified mRNA-LNP vaccination elicits enhanced protection against chronic viral challenge.

7.
Curr Opin Biotechnol ; 87: 103111, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38520821

RESUMO

In-depth profiling of cancer cells/tissues is expanding our understanding of the genomic, epigenomic, transcriptomic, and proteomic landscape of cancer. However, the complexity of the cancer microenvironment, particularly its immune regulation, has made it difficult to exploit the potential of cancer immunotherapy. High-throughput spatial omics technologies and analysis pipelines have emerged as powerful tools for tackling this challenge. As a result, a potential revolution in cancer diagnosis, prognosis, and treatment is on the horizon. In this review, we discuss the technological advances in spatial profiling of cancer around and beyond the central dogma to harness the full benefits of immunotherapy. We also discuss the promise and challenges of spatial data analysis and interpretation and provide an outlook for the future.


Assuntos
Imunoterapia , Neoplasias , Humanos , Neoplasias/terapia , Neoplasias/genética , Imunoterapia/métodos , Genômica/métodos , Microambiente Tumoral , Proteômica/métodos , Análise de Dados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA