RESUMO
FOXG1 syndrome is a rare neurodevelopmental disorder of the telencephalon, for which there is no cure. Underlying heterozygous pathogenic variants in the Forkhead Box G1 (FOXG1) gene with resulting impaired or loss of FOXG1 function lead to severe neurological impairments. Here, we report a patient with a de novo pathogenic single nucleotide deletion c.946del (p.Leu316Cysfs*10) of the FOXG1 gene that causes a premature protein truncation. To study this variant in vivo, we generated and characterized Foxg1 c946del mice that recapitulate hallmarks of the human disorder. Accordingly, heterozygous Foxg1 c946del mice display neurological symptoms with aberrant neuronal networks and increased seizure susceptibility. Gene expression profiling identified increased oligodendrocyte- and myelination-related gene clusters. Specifically, we showed that expression of the c946del mutant and of other pathogenic FOXG1 variants correlated with overexpression of proteolipid protein 1 (Plp1), a gene linked to white matter disorders. Postnatal administration of Plp1-targeting antisense oligonucleotides (ASOs) in Foxg1 c946del mice improved neurological deficits. Our data suggest Plp1 as a new target for therapeutic strategies mitigating disease phenotypes in FOXG1 syndrome patients.
Assuntos
Fatores de Transcrição Forkhead , Proteínas do Tecido Nervoso , Oligonucleotídeos Antissenso , Animais , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Camundongos , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Humanos , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/genética , Proteína Proteolipídica de Mielina/genética , Masculino , Modelos Animais de Doenças , Feminino , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/tratamento farmacológicoRESUMO
Bacterial sepsis is a major killer in hospitalized patients. Coagulase-negative staphylococci (CNS) with the leading species Staphylococcus epidermidis are the most frequent causes of nosocomial sepsis, with most infectious isolates being methicillin-resistant. However, which bacterial factors underlie the pathogenesis of CNS sepsis is unknown. While it has been commonly believed that invariant structures on the surface of CNS trigger sepsis by causing an over-reaction of the immune system, we show here that sepsis caused by methicillin-resistant S. epidermidis is to a large extent mediated by the methicillin resistance island-encoded peptide toxin, PSM-mec. PSM-mec contributed to bacterial survival in whole human blood and resistance to neutrophil-mediated killing, and caused significantly increased mortality and cytokine expression in a mouse sepsis model. Furthermore, we show that the PSM-mec peptide itself, rather than the regulatory RNA in which its gene is embedded, is responsible for the observed virulence phenotype. This finding is of particular importance given the contrasting roles of the psm-mec locus that have been reported in S. aureus strains, inasmuch as our findings suggest that the psm-mec locus may exert effects in the background of S. aureus strains that differ from its original role in the CNS environment due to originally "unintended" interferences. Notably, while toxins have never been clearly implied in CNS infections, our tissue culture and mouse infection model data indicate that an important type of infection caused by the predominant CNS species is mediated to a large extent by a toxin. These findings suggest that CNS infections may be amenable to virulence-targeted drug development approaches.
Assuntos
Toxinas Bacterianas/toxicidade , Infecções Estafilocócicas/microbiologia , Staphylococcus epidermidis/patogenicidade , Animais , Modelos Animais de Doenças , Feminino , Humanos , Resistência a Meticilina , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Virulência/fisiologiaRESUMO
Alzheimer's disease and other dementias present with tau pathology. Several mouse lines with knockout of the tau-encoding Mapt gene have been reported, yet findings often differed between lines and sites. Here, we report a new tau knockout strain (tauΔex1), generated by CRISPR/Cas9-mediated genome editing of intron -1/exon 1 of Mapt in C57Bl/6J mice. TauΔex1 mice had no overt phenotype, but, in line with previous models, they showed a significantly reduced susceptibility to excitotoxic seizures, with normal memory formation in young mice. This new in vivo resource will be made freely available to the research community.
Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Camundongos Knockout , Proteínas tau/genética , Animais , Éxons , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Several mouse lines with knockout of the tau-encoding MAPT gene have been reported in the past; they received recent attention due to reports that tau reduction prevented Aß-induced deficits in mouse models of Alzheimer's disease. However, the effects of long-term depletion of tau in vivo remained controversial. Here, we used the tau-deficient GFP knockin line Mapttm1(EGFP)kit on a pure C57Bl/6 background and subjected a large cohort of males and females to a range of motor, memory and behavior tests and imaging analysis, at the advanced age of over 16 months. Neither heterozygous nor homozygous Mapttm1(EGFP)kit mice presented with deficits or abnormalities compared to wild-type littermates. Differences to reports using other tau knockout models may be due to different genetic backgrounds, respective gene targeting strategies or other confounding factors, such as nutrition. To this end, we report no functional or morphological deficits upon tau reduction or depletion in aged mice.