Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 31(2): 2967-2976, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36785298

RESUMO

The characterization and manipulation of polarization state at single photon level are of great importance in research fields such as quantum information processing and quantum key distribution, where photons are normally delivered using single mode optical fibers. To date, the demonstrated polarimetry measurement techniques based on a superconducting nanowire single photon detector (SNSPD) require the SNSPD to be either highly sensitive or highly insensitive to the photon's polarization state, therefore placing an unavoidable challenge on the SNSPD's design and fabrication processes. In this article, we present the development of an alternative polarimetry measurement technique, of which the stringent requirement on the SNSPD's polarization sensitivity is removed. We validate the proposed technique by a rigorous theoretical analysis and comparisons of the experimental results obtained using a fiber-coupled SNSPD with a polarization extinction ratio of ∼2 to that obtained using other well-established known methods. Based on the full Stokes data measured by the proposed technique, we also demonstrate that at the single photon level (∼ -100 dBm), the polarization state of the photon delivered to the superconducting nanowire facet plane can be controlled at will using a further developed algorithm. Note that other than the fiber-coupled SNSPD, the only component involved is a quarter-wave plate (no external polarizer is necessary), which when aligned well has a paid insertion loss less than 0.5 dB.

2.
Opt Express ; 30(20): 36456-36463, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36258573

RESUMO

Superconducting nanowire single photon detectors (SNSPDs) have been extensively investigated due to their superior characteristics, including high system detection efficiency, low dark count rate and short recovery time. The polarization sensitivity introduced by the meandering-type superconductor nanowires is an intrinsic property of SNSPD, which is normally measured by sweeping hundreds of points on the Poincaré sphere to overcome the unknown birefringent problem of the SNSPD's delivery fiber. In this paper, we propose an alternative method to characterize the optical absorptance of SNSPDs, without sweeping hundreds of points on the Poincaré sphere. It is shown theoretically that measurements on the system detection efficiencies (SDEs) subject to cases of four specific photon polarization states are sufficient to reveal the two eigen-absorptances of the SNSPD. We validate the proposed method by comparing the measured detection spectra with the spectra attained from sweeping points on the Poincaré sphere and the simulated absorption spectra.

3.
Natl Sci Rev ; 11(1): nwad102, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38116087

RESUMO

Precisely acquiring the timing information of individual X-ray photons is important in both fundamental research and practical applications. The timing precision of commonly used X-ray single-photon detectors remains in the range of one hundred picoseconds to microseconds. In this work, we report on high-timing-precision detection of single X-ray photons through the fast transition to the normal state from the superconductive state of superconducting nanowires. We successfully demonstrate a free-running X-ray single-photon detector with a timing resolution of 20.1 ps made of 100-nm-thick niobium nitride film with an active area of 50 µm by 50 µm. By using a repeated differential timing measurement on two adjacent X-ray single-photon detectors, we demonstrate a precision of 0.87 ps in the arrival-time difference of X-ray photon measurements. Therefore, our work significantly enhances the timing precision in X-ray photon counting, opening a new niche for ultrafast X-ray photonics and many associated applications.

4.
Chem Commun (Camb) ; 55(96): 14530-14533, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31738364

RESUMO

An aqueous solution approach, integrating atomic layer deposition and chemical vapor deposition, is proposed to grow a high-quality Sb2S3 thin film. The Sb2S3 thin film is uniform and dense with a bandgap of 1.78 eV. The photocurrent density of the Sb2S3 sensitized TiO2 array electrode is 40 µA cm-2, which is nearly 25 and 93 times than that of TiO2 and Sb2S3 photoanodes, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA