Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Immunol ; 206(2): 323-328, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33288542

RESUMO

The NOX2 NADPH oxidase (NOX2) produces reactive oxygen species to kill phagosome-confined bacteria. However, we previously showed that Listeria monocytogenes is able to avoid the NOX2 activity in phagosomes and escape to the cytosol. Thus, despite the established role of NOX2 limiting L. monocytogenes infection in mice, the underlying mechanisms of this antibacterial activity remain unclear. In this article, we report that NOX2 controls systemic L. monocytogenes spread through modulation of the type I IFN response, which is known to be exploited by L. monocytogenes during infection. NOX2 deficiency results in increased expression of IFN-stimulated genes in response to type I IFN and leads to 1) promotion of cell-to-cell spread by L. monocytogenes, 2) defective leukocyte recruitment to infection foci, and 3) production of anti-inflammatory effectors IL-10 and thioredoxin 1. Our findings report a novel antimicrobial role for NOX2 through modulation of type I IFN responses to control bacterial dissemination.


Assuntos
Inflamação/imunologia , Interferon Tipo I/metabolismo , Leucócitos/imunologia , Listeria monocytogenes/fisiologia , Listeriose/imunologia , Macrófagos/metabolismo , NADPH Oxidase 2/metabolismo , Animais , Movimento Celular , Células Cultivadas , Interleucina-10/metabolismo , Listeriose/transmissão , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidase 2/genética , Tiorredoxinas
2.
J Biol Chem ; 294(44): 16172-16185, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31515271

RESUMO

Connections between deficient autophagy and insulin resistance have emerged, however, the mechanism through which reduced autophagy impairs insulin-signaling remains unknown. We examined mouse embryonic fibroblasts lacking Atg16l1 (ATG16L1 KO mouse embryonic fibroblasts (MEFs)), an essential autophagy gene, and observed deficient insulin and insulin-like growth factor-1 signaling. ATG16L1 KO MEFs displayed reduced protein content of insulin receptor substrate-1 (IRS1), pivotal to insulin signaling, whereas IRS1myc overexpression recovered downstream insulin signaling. Endogenous IRS1 protein content and insulin signaling were restored in ATG16L1 KO mouse embryonic fibroblasts (MEF) upon proteasome inhibition. Through proximity-dependent biotin identification (BioID) and co-immunoprecipitation, we found that Kelch-like proteins KLHL9 and KLHL13, which together form an E3 ubiquitin (Ub) ligase complex with cullin 3 (CUL3), are novel IRS1 interactors. Expression of Klhl9 and Klhl13 was elevated in ATG16L1 KO MEFs and siRNA-mediated knockdown of Klhl9, Klhl13, or Cul3 recovered IRS1 expression. Moreover, Klhl13 and Cul3 knockdown increased insulin signaling. Notably, adipose tissue of high-fat fed mice displayed lower Atg16l1 mRNA expression and IRS1 protein content, and adipose tissue KLHL13 and CUL3 expression positively correlated to body mass index in humans. We propose that ATG16L1 deficiency evokes insulin resistance through induction of Klhl9 and Klhl13, which, in complex with Cul3, promote proteasomal IRS1 degradation.


Assuntos
Proteínas Relacionadas à Autofagia/deficiência , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina , Animais , Autofagia/fisiologia , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Culina/metabolismo , Fibroblastos/metabolismo , Genes Reguladores , Células HEK293 , Humanos , Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas/metabolismo , Transdução de Sinais , Complexos Ubiquitina-Proteína Ligase/metabolismo
3.
Cell Microbiol ; 19(3)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27582004

RESUMO

Type I interferons (IFNs) play a critical role in antiviral immune responses, but can be deleterious to the host during some bacterial infections. Listeria monocytogenes (Lm) induces a type I IFN response by activating cytosolic antiviral surveillance pathways. This is beneficial to the bacteria as mice lacking the type I IFN receptor (IFNAR1-/- ) are resistant to systemic infection by Lm. The mechanisms by which type I IFNs promote Lm infection are unclear. Here, we show that IFNAR1 is required for dissemination of Lm within infection foci in livers of infected mice and for efficient cell-to-cell spread in vitro in macrophages. IFNAR1 promotes ActA polarization and actin-based motility in the cytosol of host cells. Our studies suggest type I IFNs directly impact the intracellular life cycle of Lm and provide new insight into the mechanisms used by bacterial pathogens to exploit the type I IFN response.


Assuntos
Interações Hospedeiro-Patógeno , Interferon Tipo I/metabolismo , Listeria monocytogenes/crescimento & desenvolvimento , Animais , Modelos Animais de Doenças , Listeriose/microbiologia , Listeriose/patologia , Fígado/microbiologia , Fígado/patologia , Macrófagos/microbiologia , Camundongos , Receptor de Interferon alfa e beta/metabolismo
4.
Eur J Neurosci ; 44(1): 1761-70, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26990801

RESUMO

Opioids induce rewarding and locomotor effects by inhibiting rostromedial tegmental GABA neurons that express µ-opioid and nociceptin receptors. These GABA neurons then strongly inhibit dopamine neurons. Opioid-induced reward, locomotion and dopamine release also depend on pedunculopontine and laterodorsal tegmental cholinergic and glutamate neurons, many of which project to and activate ventral tegmental area dopamine neurons. Here we show that laterodorsal tegmental and pedunculopontine cholinergic neurons project to both rostromedial tegmental nucleus and ventral tegmental area, and that M4 muscarinic receptors are co-localized with µ-opioid receptors associated with rostromedial tegmental GABA neurons. To inhibit or excite rostromedial tegmental GABA neurons, we utilized adeno-associated viral vectors and DREADDs to express designed muscarinic receptors (M4D or M3D respectively) in GAD2::Cre mice. In M4D-expressing mice, clozapine-N-oxide increased morphine-induced, but not vehicle-induced, locomotion. In M3D-expressing mice, clozapine-N-oxide blocked morphine-induced, but not vehicle-induced, locomotion. We propose that cholinergic inhibition of rostromedial tegmental GABA neurons via M4 muscarinic receptors facilitates opioid inhibition of the same neurons. This model explains how mesopontine cholinergic systems and muscarinic receptors in the rostromedial tegmental nucleus and ventral tegmental area are important for dopamine-dependent and dopamine-independent opioid-induced rewards and locomotion.


Assuntos
Neurônios GABAérgicos/metabolismo , Locomoção , Morfina/farmacologia , Receptor Muscarínico M4/metabolismo , Tegmento Mesencefálico/metabolismo , Animais , Neurônios Colinérgicos/efeitos dos fármacos , Neurônios Colinérgicos/fisiologia , Clozapina/farmacologia , Antagonistas GABAérgicos/farmacologia , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/fisiologia , Masculino , Camundongos , Agonistas Muscarínicos/farmacologia , Receptor Muscarínico M4/agonistas , Receptor Muscarínico M4/genética , Receptores Opioides mu/agonistas , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo , Recompensa , Tegmento Mesencefálico/citologia , Tegmento Mesencefálico/efeitos dos fármacos , Tegmento Mesencefálico/fisiologia
5.
Nat Commun ; 15(1): 3120, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600106

RESUMO

Salmonella utilizes a type 3 secretion system to translocate virulence proteins (effectors) into host cells during infection1. The effectors modulate host cell machinery to drive uptake of the bacteria into vacuoles, where they can establish an intracellular replicative niche. A remarkable feature of Salmonella invasion is the formation of actin-rich protuberances (ruffles) on the host cell surface that contribute to bacterial uptake. However, the membrane source for ruffle formation and how these bacteria regulate membrane mobilization within host cells remains unclear. Here, we show that Salmonella exploits membrane reservoirs for the generation of invasion ruffles. The reservoirs are pre-existing tubular compartments associated with the plasma membrane (PM) and are formed through the activity of RAB10 GTPase. Under normal growth conditions, membrane reservoirs contribute to PM homeostasis and are preloaded with the exocyst subunit EXOC2. During Salmonella invasion, the bacterial effectors SipC, SopE2, and SopB recruit exocyst subunits from membrane reservoirs and other cellular compartments, thereby allowing exocyst complex assembly and membrane delivery required for bacterial uptake. Our findings reveal an important role for RAB10 in the establishment of membrane reservoirs and the mechanisms by which Salmonella can exploit these compartments during host cell invasion.


Assuntos
Infecções por Salmonella , Salmonella typhimurium , Humanos , Salmonella typhimurium/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Infecções por Salmonella/microbiologia , Membrana Celular/metabolismo , Membranas/metabolismo , Células HeLa
6.
Nat Commun ; 12(1): 4999, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404769

RESUMO

The type I interferon (IFN) signaling pathway has important functions in resistance to viral infection, with the downstream induction of interferon stimulated genes (ISG) protecting the host from virus entry, replication and spread. Listeria monocytogenes (Lm), a facultative intracellular foodborne pathogen, can exploit the type I IFN response as part of their pathogenic strategy, but the molecular mechanisms involved remain unclear. Here we show that type I IFN suppresses the antibacterial activity of phagocytes to promote systemic Lm infection. Mechanistically, type I IFN suppresses phagosome maturation and proteolysis of Lm virulence factors ActA and LLO, thereby promoting phagosome escape and cell-to-cell spread; the antiviral protein, IFN-induced transmembrane protein 3 (IFITM3), is required for this type I IFN-mediated alteration. Ifitm3-/- mice are resistant to systemic infection by Lm, displaying decreased bacterial spread in tissues, and increased immune cell recruitment and pro-inflammatory cytokine signaling. Together, our findings show how an antiviral mechanism in phagocytes can be exploited by bacterial pathogens, and implicate IFITM3 as a potential antimicrobial therapeutic target.


Assuntos
Antibacterianos/farmacologia , Listeria/efeitos dos fármacos , Listeriose/imunologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Fagócitos/imunologia , Fagócitos/microbiologia , Animais , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno , Interferon Tipo I/metabolismo , Listeria monocytogenes/imunologia , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fagossomos/imunologia , Células RAW 264.7 , Transcriptoma , Fatores de Virulência , Internalização do Vírus/efeitos dos fármacos
7.
Autophagy ; 15(5): 932-933, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30806149

RESUMO

There is growing evidence in the literature for unconventional roles of autophagy-related (ATG) proteins, outside of their function in canonical autophagy. Here we discuss our recent study that revealed a novel ATG16L1-dependent pathway that promotes plasma membrane repair upon bacterial pore-forming toxin damage. Disruption of the ATG16L1-dependent pathway leads to an accumulation of cholesterol in lysosomes, which affects lysosomal exocytosis required for efficient membrane repair. Our study provides insights into the role of ATG16L1 in cholesterol homeostasis and plasma membrane integrity.


Assuntos
Autofagia , Proteínas Relacionadas à Autofagia , Proteínas de Transporte , Membrana Celular , Lisossomos
8.
Nat Microbiol ; 3(12): 1472-1485, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30478389

RESUMO

Plasma membrane integrity is essential for the viability of eukaryotic cells. In response to bacterial pore-forming toxins, disrupted regions of the membrane are rapidly repaired. However, the pathways that mediate plasma membrane repair are unclear. Here we show that autophagy-related (ATG) protein ATG16L1 and its binding partners ATG5 and ATG12 are required for plasma membrane repair through a pathway independent of macroautophagy. ATG16L1 is required for lysosome fusion with the plasma membrane and blebbing responses that promote membrane repair. ATG16L1 deficiency causes accumulation of cholesterol in lysosomes that contributes to defective membrane repair. Cell-to-cell spread by Listeria monocytogenes requires membrane damage by the bacterial toxin listeriolysin O, which is restricted by ATG16L1-dependent membrane repair. Cells harbouring the ATG16L1 T300A allele associated with inflammatory bowel disease were also found to accumulate cholesterol and be defective in repair, linking a common inflammatory disease to plasma membrane integrity. Thus, plasma membrane repair could be an important therapeutic target for the treatment of bacterial infections and inflammatory disorders.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Listeria monocytogenes/efeitos dos fármacos , Animais , Autofagia , Proteína 12 Relacionada à Autofagia/metabolismo , Proteína 5 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Toxinas Bacterianas/toxicidade , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte/farmacologia , Colesterol/metabolismo , Modelos Animais de Doenças , Exocitose , Células HeLa , Proteínas de Choque Térmico/toxicidade , Proteínas Hemolisinas/toxicidade , Humanos , Listeria monocytogenes/metabolismo , Lisossomos , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA