Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Appl Opt ; 62(17): 4618-4623, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37707159

RESUMO

We present a multilevel synergically controlling wavefront correction method that can apply in a slab laser system. To fully utilize the response frequency and the stroke of actuators of the single deformable mirror (DM), we design a set of multilevel wavefront correction devices to reduce the root-mean square of wavefront aberration before the DM. As the wavefront of slab geometry solid-state lasers mainly consists of fourth and longitudinally distributed aberration, such as 5th, 9th, and 14th orders of Legendre polynomials. We design a precompensating level of the aberration with a slow-drift mirror, fast-steer mirror, one-dimensional adjustable slab-aberration compensator, and beam-shaping system to reduce these orders of wavefront aberration with low spatial resolution and large stroke. As the controlling bandwidth of different devices is diverse, the coupling oscillation between the precompensating level and adaptive optics (AO) level occurs, then we develop the multilevel synergically control to address the coupling. With the precompensating level, the experimental result shows the residual wavefront aberration of the slab laser is compensated well by the AO level effectively within the compensating capability. We clean up a 9.8 kW slab laser system with the beam quality ß of far-field focus spots improved from 17.71 to 2.24 times the diffraction limit.

2.
Opt Express ; 30(5): 7664-7676, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35299523

RESUMO

The geometric aberration of centered refracting double-plane symmetric optical systems (DPSOS) is investigated. For DPSOS with different defocus values in the tangential plane and the sagittal plane (astigmatic wavefront), a pair of curved reference surfaces which vanishes the quadratic terms of the optical path difference (OPD) between a general ray and a reference ray are deduced. With the curved reference surfaces, the primary (fourth-order) wave aberration function for DPSOS is calculated and analyzed, which can be used for beam shaping designs with astigmatic input wavefront, such as slab lasers and semiconductor lasers. Further, the proposed curved reference surfaces can be applied to analyze the aberrations of general DPSOS.

3.
Appl Opt ; 60(31): 9672-9680, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34807150

RESUMO

For reshaping aperture size and correcting low-order aberration of laser beams with large aspect ratios, a simplified analytical method is proposed to design an anamorphic refractive shaping system, which is composed of double-plane symmetric lenses. The simplified method enables performing a global study of aberrations via calculating the analytical primary wave aberration function under paraxial approximation. The aberration balance is analyzed with a three-lens laser collimating system and a compact four-lens laser expanding system. Lens bending and conic surfaces are introduced to decrease ray errors. Through the simplified analytical method, anamorphic refractive shaping systems for laser beams with large aspect ratios can be adequately analyzed and conveniently designed.

4.
Huan Jing Ke Xue ; 45(1): 61-70, 2024 Jan 08.
Artigo em Zh | MEDLINE | ID: mdl-38216458

RESUMO

In August 2022, Chengdu and Chongqing showed significant differences in ozone (O3) pollution. Chengdu had O3 pollution days for 20 days, whereas Chongqing had no O3 pollution days. In this study, we analyzed the influencing factors of this difference from the emission level of precursors and meteorological conditions. The results showed that:① the total mixing ratio of 52 VOCs (volatile organic compounds) (including 26 alkanes, 16 aromatics, and 10 alkenes) in Chengdu (18.8×10-9) was 2.8 times that of Chongqing (6.6×10-9), and the total O3 formation potential (OFP) (51.2×10-9) was 2.0 times that of Chongqing (25.0×10-9). The·OH radical loss rate (L·OH) (3.9 s-1) was 1.7 times that of Chongqing (2.3 s-1). The top three OFP in Chengdu were ethylene, m/p-xylene, and isoprene, and those in Chongqing were isoprene, ethylene, and propylene. The contribution rate of alkenes to O3 in Chongqing was 60.7%, whereas the OFP of alkenes and aromatics in Chengdu were 1.6 times and 2.9 times that in Chongqing. In conclusion, the total mixing ratio of VOCs, atmospheric photochemical activity, and O3 formation potential of Chengdu were higher than those of Chongqing. ② Isoprene was ranked first place in L·OH in both Chengdu and Chongqing, indicating that the contribution of biogenic sources to O3 pollution in August was significant. However, the biogenic source emission activity was in response to temperature. From August 14 to 24, the high temperature in Chongqing (38.3℃) decreased biogenic source emission activity, whereas the temperature in Chengdu (34.9℃) increased the biogenic sources emission activity. ③ The horizontal and vertical atmospheric diffusion conditions of Chongqing were better than those of Chengdu, and Chengdu was affected by regional pollution transmission.

5.
Huan Jing Ke Xue ; 42(6): 2648-2658, 2021 Jun 08.
Artigo em Zh | MEDLINE | ID: mdl-34032064

RESUMO

Oxygenated volatile organic compounds (OVOCs) are important intermediates in the troposphere and the most important sources of ozone. Proton-transfer-reaction time-of-flight mass spectrometry (PTR-TOF-MS) was used to measure VOCs in the Chengdu Plain, Southwestern China. The diurnal variations, photochemical reactivity, O3 formation potential, and sources were also investigated. The mixing ratios of ten kinds of VOCs (acetaldehyde, acetone, isoprene, Methyl ethyl ketone, Methyl vinyl ketone and Methacrolein, benzene, toluene, styrene, C8 aromatics, and C9 aromatics) were (10.97±4.69)×10-9. The concentrations of OVOCs, aromatic hydrocarbons, and biogenic VOCs were (8.54±3.44)×10-9, (1.53±0.93)×10-9, and (0.90±0.32)×10-9, respectively. Isoprene, acetaldehyde, and m-xylene were the top three photochemically active species with the greatest O3 formation potentials. The dominant three OVOCs species (acetaldehyde, acetone, and MEK) were mainly derived from local biogenic sources and anthropogenic secondary sources, and acetone had a strong regional background level, indicating that pollution in this area is significantly affected by regional transmission. This study deepens the understanding of regional O3 formation mechanisms in southwest China and provides a basis for the scientifically informed control of O3 pollution.

6.
Huan Jing Ke Xue ; 41(7): 3042-3055, 2020 Jul 08.
Artigo em Zh | MEDLINE | ID: mdl-32608876

RESUMO

The volatile organic compound (VOC) emission characteristics of various production procedures were analyzed through GC-MS after the emissions of typical enterprises such as automobile manufacturing, petrochemical, and other industries had been sampled with SUMMA canisters. Each production procedure in the automobile manufacturing and petrochemical industries was considered. The results showed that each automobile manufacturing procedure had its own dominant species, and alkanes (32%) and aromatics (35%) were the main emission species of coating spraying. The emission characteristics of furniture manufacturing were highly correlated with the raw materials, and the VOC emission species were mainly composed of aromatics (50%) and oxygenated VOCs (OVOCs) (38%). As for the petrochemical industry, VOC concentrations in various process plant areas ranged from 49 µg·m-3 to 1387 µg·m-3. As the main products of the refining area were C5-C9 gasoline and benzene series, whereas comparatively more solvents were used in the chemical area, which would generate alkene products, VOC concentrations greatly differed in the various process plant areas. In terms of electronic manufacturing, OVOCs were the main emission species, accounting for more than 50% of total VOCs. Alkanes and OVOCs were the main contributors to VOC emissions in shoemaking, accounting for 52% and 36% on average, respectively, which was strongly related to the species of the used solvents. The VOC emission species of automobile manufacturing were quite different, predominantly including n-dodecane and 2-butanone. The emission species of furniture manufacturing mainly included styrene, ethyl acetate, m/p-xylene, etc., which are typical species of coatings and diluents. As for the differences in the emission species of process plant areas in the petrochemical industry, styrene was the main species in the refining area, 1,3-butadiene in the chemical area, C3-C5 alkanes in the storage area, and C6-C8 alkanes in the wastewater treatment area. The main emission species of electronic manufacturing were ethanol, acetone, and other aldehyde ketone species. The emission species of shoemaking enterprises are mainly C5 and C6 alkanes. According to the results of ozone formation potential (OFP), alkenes and aromatics were the main VOC emission species that contribute significantly to the OFP in the automobile manufacturing and petrochemical industries, with relatively high pollution source reaction activity. The results showed that the emission ratio (17%-96%) and OFP contributions of OVOCs were significant in various industries. Therefore, for VOC emission control, in addition to focusing on the control of aromatics and alkenes, attention should also be paid to OVOCs.

7.
Huan Jing Ke Xue ; 40(4): 1613-1626, 2019 Apr 08.
Artigo em Zh | MEDLINE | ID: mdl-31087901

RESUMO

Based on the measured data in the literature, VOCs (volatile organic compounds) source profiles were revised and reconstructed without OVOCs (oxygenated volatile organic compounds) species to obtain the normalized VOCs source profiles. Using the 2015 Sichuan emission inventory, source profiles based on the 1 km×1 km gridded speciated VOCs emission inventory were developed, and the ozone formation potentials of the species were estimated to assess the environmental impact on ozone formation. The established VOCs source profile database consists of 45 source profiles and 519 species. Since the source profiles were established based on the revision and reconstruction of pollution sources, such as biomass burning and transportation, that are rich in OVOCs, the source profile database is better applicable to establishing the speciated VOCs emission inventory and source apportionment. The speciated VOCs emission inventory showed that the total anthropogenic emission of VOCs in Sichuan Province was 773.8 kt, of which the emissions of alkanes, olefins, alkynes, aromatics, OVOCs, halohydrocarbons, and other VOCs accounted for 21.6%, 10.0%, 1.7%, 28.0%, 26.2%, 4.2%, and 8.3% of the total respectively. The total OFP (Ozone formation potential) was 2584.9 kt, of which the OFPs of the VOCs groups mentioned above accounted for 6.9%, 26.1%, 0.5%, 42.3%, 23.2%, 0.4%, and 0.5% respectively. The main VOCs species emitted in all cities of Sichuan Province were aromatics, OVOCs, and alkanes; however, there were some significant regional differences:transportation in Chengdu, Ya'an, Aba, Ganzi, and Liangshan made a greater contribution to VOCs emissions, with alkane emissions accounting for a higher proportion in the total VOCs emission. As a heavy industrial city, Panzhihua suffered most from emissions from industrial processes, which contain a relatively high proportion of alkanes. Solvent use in Deyang, Meishan, Suining, and Ziyang made a great contribution to the VOCs emissions, and the OVOCs emission was relatively high. Emissions of VOCs and species with relatively high OFPs in Sichuan Province were mainly distributed in the Sichuan Basin, which has a dense population and highly developed industry, as well as some areas in Liangshan and Panzhihua. The main source of m-xylene and toluene was solvent use; therefore, m-xylene and toluene were relatively concentrated in developed urban areas. In addition, biomass burning contributed greatly to the emissions of ethene and formaldehyde; therefore, ethene and formaldehyde were mainly distributed in the cultivated areas of agriculturally advanced Eastern Sichuan and Southern Sichuan.

8.
Huan Jing Ke Xue ; 40(9): 3949-3961, 2019 Sep 08.
Artigo em Zh | MEDLINE | ID: mdl-31854857

RESUMO

The characteristics of volatile organic compound (VOCs) species from various production procedures of wood-based panel production and other industrial processes in Chengdu were analyzed through gas chromatography-mass spectrometry (GC-MS) and other methods specified in national standards after the emissions of typical enterprises of wood-based panel production, pharmaceutical manufacturing, chemical production and other industrial processes in Chengdu had been sampled using sampling bottles and SUMMA canisters. Generally, the process of wood-based panel production includes glue making, glue mixing, sorting, and hot pressing, whereas the process of pharmaceutical manufacturing includes workshop production and wastewater treatment. The results showed that the main contribution species of VOCs in wood-based panel production and pharmaceutical manufacturing is oxygenated VOCs (OVOCs), accounting for more than 50% of the total VOCs emitted. The species from organized and unorganized emissions of formaldehyde manufacturing differed significantly. The main species of organized emissions was OVOCs, and that of unorganized emissions was halohydrocarbons. Emissions of VOCs from coating manufacturing were strongly correlated with the raw materials, and the corresponding emission species were composed mainly of aromatics and OVOCs. Except for glue mixing, the main species of VOCs in other process procedures of wood-based panel production was formaldehyde, with emission proportion of more than 50%. The primary species of VOCs in various processes of pharmaceutical manufacturing was ethanol; however 1,4-dioxane, ethyl acetate, and toluene were also important species. Moreover, the main VOCs from formaldehyde manufacturing were composed mainly of acetone and ethanol, and those of coating manufacturing were aromatic hydrocarbons such as p-xylene. The ozone formation potential was to characterize the reactivity of pollution sources in VOCs from wood-based panel production, pharmaceutical manufacturing, and chemical production. The results showed that the species of VOCs in different industries contributed similarly to the reactivity and that these species were mainly high-activity species such as formaldehyde, ethanol, and other OVOCs as well as some aromatic hydrocarbons. Therefore, supervision and regulation of enterprises of industrial processes is required with a focus on species with relatively large ozone formation potential. In addition, it is necessary to analyze the emission characteristics and chemical mechanism of various industries and to control O3 generation from the sources.

9.
Huan Jing Ke Xue ; 39(4): 1466-1472, 2018 Apr 08.
Artigo em Zh | MEDLINE | ID: mdl-29964970

RESUMO

The effect of relative humidity (RH) on particulate matter concentrations and atmosphere visibility were investigated using the continuous on-line observed data of Chengdu city during December 2015, including RH, visibility, the concentrations of particulate matters (PM10, PM2.5 and PM1) and gaseous pollutants (SO2 and NO2), and the concentrations of SO42- and NO3- in PM2.5. The results showed that the haze process occurred because of the synergistic effects of higher particulate matter concentrations and RH, leading to the reduction of visibility. The average ratio of PM2.5 to PM10 was 64% and it significantly increased with the increase of RH during observation period, which indicated that the pollution of fine particles during winter in Chengdu was serious, and high RH aggravated the pollution caused by fine particles.Visibility decreased exponentially with the increase of particulate matter concentrations. When RH was higher, visibility was lower at the same concentrations of particulate matter.RH had a strong effect on visibility at lower particle concentrations, while the effect of RH on the visibility decreased, and atmospheric extinction was controlled by PM2.5 concentrations at higher particle concentrations. With RH increasing from less than 40% to more than 70%, the average sulfur oxidation ratio (SOR) and nitrogen oxidation ratio (NOR) increased from 0.27 and 0.11 to 0.40 and 0.19, respectively, indicating that higher RH significantly promoted the formation of secondary sulfate and nitrate. Secondary sulfate and nitrate separately or coordinatively influenced the air quality.

10.
Huan Jing Ke Xue ; 39(12): 5344-5358, 2018 Dec 08.
Artigo em Zh | MEDLINE | ID: mdl-30628377

RESUMO

Based on anthropogenic source activity data and emission factors for the Sichuan Province, the 1 km×1 km-gridded atmospheric air pollutant emission inventory of 2015 was developed in combination with GIS technology and the combined "bottom-up" and "top-down" construction method. The results show that the total emission of SO2, NOx, CO, PM10, PM2.5, BC, OC, VOCs, and NH3 in Chengdu is 444.9×103, 820.0×103, 3773.1×103, 1371.6×103, 537.5×103, 28.7×103, 53.1×103, 923.6×103, and 988.0×103 t, respectively. Power plants and other industrial combustion boilers contribute more than 95% of the SO2 emissions. Mobile, fossil fuel combustion, and industrial process sources contribute 54%, 23%, and 20% of the NOx emissions, respectively. The industrial process of steel production and building materials manufacturing contribute 20% PM10 of the emissions and take up 34% PM2.5 of the emissions. Fugitive dust and road fugitive dust contributes 60% PM10 and 35% PM2.5 of the emissions, respectively. Biomass combustion contributes 33% BC and 51% OC of the emissions, respectively. The solvent use of mechanical processing, building decoration, electronic equipment manufacturing, and printing and furniture industry contribute 46% of the VOCs of the emissions. The NH3 emissions mainly orginate from the sources of livestock feeding and nitrogen fertilizers, accounting for 70% and 25% of the NH3 emissions, respectively. The spatial distribution of the emissions shows that high emissions are mainly distributed in the most densely populated, agricultural, and industrial more developed areas in Panzhihua and the Sichuan Basin. The urban agglomerations of the Chengdu Plain, represented by Chengdu, Deyang, and Mianyang, are the areas with emission concentration in the Sichuan Basin. The emissions inventory in this study has uncertainties. More fundamental studies on activity data should be conducted and the emission factors of typical emission sources should be further localized to improve the emission inventory and prevention and control of complex air pollution in the Sichuan Province and provide scientific support.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA