Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(12): e2315707121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38489388

RESUMO

KCTD10 belongs to the KCTD (potassiumchannel tetramerization domain) family, many members of which are associated with neuropsychiatric disorders. However, the biological function underlying the association with brain disorders remains to be explored. Here, we reveal that Kctd10 is highly expressed in neuronal progenitors and layer V neurons throughout brain development. Kctd10 deficiency triggers abnormal proliferation and differentiation of neuronal progenitors, reduced deep-layer (especially layer V) neurons, increased upper-layer neurons, and lowered brain size. Mechanistically, we screened and identified a unique KCTD10-interacting protein, KCTD13, associated with neurodevelopmental disorders. KCTD10 mediated the ubiquitination-dependent degradation of KCTD13 and KCTD10 ablation resulted in a considerable increase of KCTD13 expression in the developing cortex. KCTD13 overexpression in neuronal progenitors led to reduced proliferation and abnormal cell distribution, mirroring KCTD10 deficiency. Notably, mice with brain-specific Kctd10 knockout exhibited obvious motor deficits. This study uncovers the physiological function of KCTD10 and provides unique insights into the pathogenesis of neurodevelopmental disorders.


Assuntos
Encefalopatias , Transtornos do Neurodesenvolvimento , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Animais , Camundongos , Proteínas/metabolismo , Encéfalo/metabolismo , Neurônios/metabolismo , Transtornos do Neurodesenvolvimento/genética , Encefalopatias/genética , Neurogênese/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo
2.
J Cell Mol Med ; 28(18): e70102, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39294858

RESUMO

Colorectal cancer (CRC) exhibits considerable heterogeneity on tumour location. However, there is still a lack of comprehensive annotation regarding the characteristics and differences between the left-sided (L-CRC) and right-sided (R-CRC) CRC. Here, we performed single-cell RNA sequencing (scRNA-seq) on immune and stromal cells from 12 L-CRC and 10 R-CRC patients. We found that L-CRC exhibited stronger tumour invasion and poor prognosis compared with R-CRC. In addition, functional enrichment analysis of a normal cohort showed that fibroblasts of left colon are associated with tumour-related pathways. This suggested that the heterogeneity observed in both L-CRC and R-CRC may be influenced by the specific location within the colon itself. Further, we identified a potentially novel MYH11+ cancer-associated fibroblast (CAF) subset predominantly enriched in L-CRC. Moreover, we found that MYH11+ CAFs may promote tumour migration via interacting with macrophages, and was associated with poor prognosis in CRC. In summary, our study revealed the crucial role of MYH11+ CAFs in predicting a poor prognosis, thereby contributing valuable insights to the exploration of heterogeneity in L-CRC and R-CRC.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Colorretais , Cadeias Pesadas de Miosina , Análise de Célula Única , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Movimento Celular/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Heterogeneidade Genética , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Prognóstico , Análise de Sequência de RNA , Análise de Célula Única/métodos
3.
Am J Hum Genet ; 107(5): 963-976, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33157009

RESUMO

NCKAP1/NAP1 regulates neuronal cytoskeletal dynamics and is essential for neuronal differentiation in the developing brain. Deleterious variants in NCKAP1 have been identified in individuals with autism spectrum disorder (ASD) and intellectual disability; however, its clinical significance remains unclear. To determine its significance, we assemble genotype and phenotype data for 21 affected individuals from 20 unrelated families with predicted deleterious variants in NCKAP1. This includes 16 individuals with de novo (n = 8), transmitted (n = 6), or inheritance unknown (n = 2) truncating variants, two individuals with structural variants, and three with potentially disruptive de novo missense variants. We report a de novo and ultra-rare deleterious variant burden of NCKAP1 in individuals with neurodevelopmental disorders which needs further replication. ASD or autistic features, language and motor delay, and variable expression of intellectual or learning disability are common clinical features. Among inherited cases, there is evidence of deleterious variants segregating with neuropsychiatric disorders. Based on available human brain transcriptomic data, we show that NCKAP1 is broadly and highly expressed in both prenatal and postnatal periods and demostrate enriched expression in excitatory neurons and radial glias but depleted expression in inhibitory neurons. Mouse in utero electroporation experiments reveal that Nckap1 loss of function promotes neuronal migration during early cortical development. Combined, these data support a role for disruptive NCKAP1 variants in neurodevelopmental delay/autism, possibly by interfering with neuronal migration early in cortical development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Transtorno do Espectro Autista/genética , Deficiência Intelectual/genética , Deficiências da Aprendizagem/genética , Mutação , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Adolescente , Animais , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/patologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Criança , Feminino , Expressão Gênica , Genótipo , Células HEK293 , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/patologia , Deficiências da Aprendizagem/diagnóstico , Deficiências da Aprendizagem/patologia , Masculino , Camundongos , Camundongos Knockout , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Linhagem , Fenótipo , Gravidez , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transcriptoma , Adulto Jovem
4.
Genet Med ; 24(8): 1761-1773, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35511136

RESUMO

PURPOSE: The study aimed to investigate the role of PABPC1 in developmental delay (DD). METHODS: Children were examined by geneticists and pediatricians. Variants were identified using exome sequencing and standard downstream bioinformatics pipelines. We performed in silico molecular modeling and coimmunoprecipitation to test if the variants affect the interaction between PABPC1 and PAIP2. We performed in utero electroporation of mouse embryo brains to enlighten the function of PABPC1. RESULTS: We describe 4 probands with an overlapping phenotype of DD, expressive speech delay, and autistic features and heterozygous de novo variants that cluster in the PABP domain of PABPC1. Further symptoms were seizures and behavioral disorders. Molecular modeling predicted that the variants are pathogenic and would lead to decreased binding affinity to messenger RNA metabolism-related proteins, such as PAIP2. Coimmunoprecipitation confirmed this because it showed a significant weakening of the interaction between mutant PABPC1 and PAIP2. Electroporation of mouse embryo brains showed that Pabpc1 knockdown decreases the proliferation of neural progenitor cells. Wild-type Pabpc1 could rescue this disturbance, whereas 3 of the 4 variants did not. CONCLUSION: Pathogenic variants in the PABP domain lead to DD, possibly because of interference with the translation initiation and subsequently an impaired neurogenesis in cortical development.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Proteína I de Ligação a Poli(A)/metabolismo , Animais , Criança , Deficiências do Desenvolvimento/genética , Heterozigoto , Humanos , Deficiência Intelectual/genética , Camundongos , Transtornos do Neurodesenvolvimento/genética , Proteína I de Ligação a Poli(A)/química , RNA Mensageiro , Proteínas de Ligação a RNA/genética , Sequenciamento do Exoma
5.
Cell Physiol Biochem ; 39(4): 1479-94, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27607466

RESUMO

BACKGROUND/AIMS: Pleurotus eryngii is one of the most valued and delicious mushrooms which are commercially cultivated on various agro-wastes. How different substrates affect lignocellulosic biomass degradation, lignocellulosic enzyme production and biological efficiency in Pleurotus eryngii was unclear. METHODS AND RESULTS: In this report, Pleurotus eryngii was cultivated in substrates including ramie stalks, kenaf stalks, cottonseed hulls and bulrush stalks. The results showed that ramie stalks and kenaf stalks were found to best suitable to cultivate Pleurotus eryngii with the biological efficiency achieved at 55% and 57%, respectively. In order to establish correlations between different substrates and lignocellulosic enzymes expression, the extracellular proteins from four substrates were profiled with high throughput TMT-based quantitative proteomic approach. 241 non-redundant proteins were identified and 74 high confidence lignocellulosic enzymes were quantified. Most of the cellulases, hemicellulases and lignin depolymerization enzymes were highly up-regulated when ramie stalks and kenaf stalks were used as carbon sources. The enzyme activities results suggested cellulases, hemicellulases and lignin depolymerization enzymes were significantly induced by ramie stalks and kenaf stalks. CONCLUSION: The lignocelluloses degradation, most of the lignocellulosic enzymes expressions and activities of Pleurotus eryngii had positive correlation with the biological efficiency, which depend on the nature of lignocellulosic substrates. In addition, the lignocellulosic enzymes expression profiles during Pleurotus eryngii growth in different substrates were obtained. The present study suggested that most of the lignocellulosic enzymes expressions and activities can be used as tools for selecting better performing substrates for commercial mushroom cultivation.


Assuntos
Celulases/metabolismo , Proteínas Fúngicas/metabolismo , Glicosídeo Hidrolases/metabolismo , Lignina/metabolismo , Pleurotus/enzimologia , Biomassa , Celulases/genética , Celulases/isolamento & purificação , Produtos Agrícolas , Ensaios Enzimáticos , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Expressão Gênica , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/isolamento & purificação , Hidrólise , Lignina/química , Anotação de Sequência Molecular , Pleurotus/genética , Proteômica/métodos , Especificidade por Substrato , Resíduos
6.
Aging Dis ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38377019

RESUMO

In ischemic stroke, neutrophils are the first-line peripheral immune cells infiltrating the brain tissue to form neutrophil extracellular traps (NETs). The present study aimed to investigate the role of neuronal cold-inducible RNA-binding protein (CIRP) in promoting NETs-induced brain endothelial barrier destruction and cerebral edema after ischemic stroke. We found that the expression of NETs and neuronal CIRP in the penumbra increased at 6 hours after transient middle cerebral artery occlusion (tMCAO) and increased significantly at 24 hours, reaching a peak at 3 days. NETs degradation or CIRP inhibition can alleviate the leakage of brain endothelial barrier and reverse the decreased expression of tight junction proteins (zonula occludens-1, claudin-5 and occludin) in tMCAO mice. Oxygen-glucose deprivation/reperfusion treated primary neurons or recombinant CIRP could induce NETs formation via TLR4/p38 signaling pathway in vitro. Transcription factor specificity protein 1 (sp1) was responsible for the increased neuronal CIRP expression and the inhibition of sp1 could suppress the increased CIRP expression, reduce NETs formation, and diminish brain endothelial barrier leakage in tMCAO mice. We also found the upregulated CIRP level was associated with severe cerebral edema in patients with acute ischemic stroke. In conclusion, the increased expression of transcription factor sp1 after ischemic stroke can lead to elevated CIRP expression and release from the neurons, which subsequently interacts with neutrophils and promotes NETs formation, resulting in brain endothelial barrier destruction and cerebral edema.

7.
Mol Neurobiol ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829512

RESUMO

CELF2 variants have been linked to neurodevelopmental disorders (NDD), including autism spectrum disorder (ASD). However, the molecular mechanisms remain unclear. We generated Celf2 Nestin-Cre knockout mice.Our findings revealed that Celf2 Nestin-Cre heterozygous knockout mice exhibited social impairment and anxiety, an autism-like behavior, though no manifestations of repetitive stereotyped behavior, learning cognitive impairment, or depression were observed. Immunofluorescence assay showed an underdeveloped cerebral cortex with significantly reduced cortical thickness, albeit without abnormal cell density. Further in vitro neuronal culture demonstrated a significant reduction in dendritic spine density and affected synaptic maturation in Celf2 deficient mice, with no notable abnormalities in total neurite and axon length. RNA-seq and RIP-seq analysis of the cerebral cortex revealed differentially expressed genes post Celf2 gene knockout compared with the control group. Enrichment analysis highlighted significant enrichment in dendrite and synapse-related biological processes and pathways. Our study delineated the behavioral and neurodevelopmental phenotypes of Celf2, suggesting its potential involvement in autism through the regulation of target genes associated with dendritic spines and synapse development. Further research is needed to elucidate the specific mechanisms involved.

8.
Gene ; 897: 148071, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38081334

RESUMO

With the continuous deepening of genetic research on neurodevelopmental disorders (NDDs), more patients have been identified the causal or candidate genes. However, it is still urgent needed to increase the sample size to confirm the associations between variants and clinical manifestations. We previously performed molecular inversion probe sequencing of autism spectrum disorder (ASD) candidate genes in 1543 ASD patients. In this study, we used the same method to detect de novo variants (DNVs) in 665 NDD patients with intellectual disability (ID) and/or epilepsy (EP) for genetic analysis and diagnosis. We compared findings from ID/EP and ASD patients to improve our understanding of different subgroups of NDDs. We identified 72 novel variants and 39 DNVs. A totally of 5.71 % (38/665) of the patients were genetically diagnosed by this sequencing strategy. ID/EP patients demonstrated a higher prevalence of likely gene disruptive DNVs in ASD genes than the healthy population. Regarding high-risk genes, SCN1A and CKDL5 were more frequently mutated in ID/EP patients than in ASD patients. Our data provide an overview of the mutation burden in ID/EP patients from the perspective of high risk ASD genes, indicating the differences and association of NDDs subgroups.


Assuntos
Transtorno do Espectro Autista , Epilepsia , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Transtorno do Espectro Autista/genética , Transtornos do Neurodesenvolvimento/genética , Deficiência Intelectual/genética , Epilepsia/genética , Predisposição Genética para Doença
9.
Expert Rev Neurother ; 23(8): 721-739, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37427452

RESUMO

INTRODUCTION: Post-stroke depression (PSD), one of the most common complications following stroke, affects approximately one-third of stroke patients and is significantly associated with increased disability and mortality as well as decreased quality of life, which makes it an important public health concern. Treatment of PSD significantly ameliorates depressive symptoms and improves the prognosis of stroke. AREAS COVERED: The authors discuss the critical aspects of the clinical application of prediction and preventive treatment of PSD. Then, the authors update the biological factors associated with the onset of PSD. Furthermore, they summarize the recent progress in pharmacological preventive treatment in clinical trials and propose potential treatment targets. The authors also discuss the current roadblocks in the preventive treatment of PSD. Finally, the authors put postulate potential directions for future studies so as to discover accurate predictors and provide individualized preventive treatment. EXPERT OPINION: Sorting out high-risk PSD patients using reliable predictors will greatly assist PSD management. Indeed, some predictors not only predict the incidence of PSD but also predict prognosis, which indicates that they might also aid the development of an individualized treatment scheme. Preventive application of antidepressants may also be considered.


Assuntos
Depressão , Acidente Vascular Cerebral , Humanos , Depressão/etiologia , Depressão/prevenção & controle , Qualidade de Vida , Fatores de Risco , Acidente Vascular Cerebral/tratamento farmacológico , Antidepressivos/uso terapêutico
10.
Brain Res Bull ; 199: 110667, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37192717

RESUMO

The complement system is crucial to the innate immune system. It has the function of destroying pathogens by activating the classical, alternative, and lectin pathways. The complement system is important in nervous system diseases such as cerebrovascular and neurodegenerative diseases. Activation of the complement system involves a series of intercellular signaling and cascade reactions. However, research on the source and transport mechanisms of the complement system in neurological diseases is still in its infancy. Studies have increasingly found that extracellular vesicles (EVs), a classic intercellular communication paradigm, may play a role in complement signaling disorders. Here, we systematically review the EV-mediated activation of complement pathways in different neurological diseases. We also discuss the prospect of EVs as future immunotherapy targets.


Assuntos
Vesículas Extracelulares , Doenças Neurodegenerativas , Humanos , Vesículas Extracelulares/metabolismo , Proteínas do Sistema Complemento/metabolismo , Doenças Neurodegenerativas/metabolismo , Comunicação Celular , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA