Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioresour Technol ; 372: 128665, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36693508

RESUMO

The decrease of cellulase activity and unproductive adsorption of lignin are important obstructive factors for inefficient enzymatic hydrolysis. This paper applied five different kinds of biosurfactants including rhamnolipid, sophorolipid, chitin, tea saponin, and sodium lignosulfonate in the enzymatic hydrolysis process of alkali-pretreated reed straw (RS) to enhance the saccharification efficiency. When 8 g/L sophorolipid is added, the efficiency of enzymatic hydrolysis is 91.68 %, which is 30.65 % higher than that without using any biosurfactant. The efficiency of enzymatic hydrolysis can be further increased to 99.56 % when 7.5 g/L sophorolipid and 1.5 g/L tea saponin are added together. This is because the sophorolipid, rhamnolipid, and chitin can synergistically hamper the enzymatic inactivation during enzymatic hydrolysis, while tea saponin and sodium lignosulfonate can inhibit the non-productive adsorption of lignin. This work proposed a very effective method to improve the efficiency of enzymatic hydrolysis and reduce the dosage of the enzyme by adding biosurfactants.


Assuntos
Celulase , Lignina , Álcalis , Hidrólise , Quitina , Chá
2.
Environ Sci Pollut Res Int ; 30(24): 65482-65499, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37081369

RESUMO

Selective catalytic reduction (SCR) has been one of the most efficient and widely used technologies to remove nitrogen oxides (NOx). SCR research has developed rapidly in recent years, which can be reflected by the dramatic increase of related academic publications. Herein, based on the 10,627 documents from 2001 to 2020 in Web of Science, the global research landscape and hotspots in SCR are investigated based on a comprehensive bibliometric analysis. The results show that SCR research has developed positively; the annul number of articles increase sharply from 246 in 2001 to 1092 in 2020. People's Republic of China and Chinese Academy of Sciences are the most productive country and institution, respectively. The global collaboration is extensive and frequent, while People's Republic of China and USA have the most frequent research cooperation. Applied Catalysis B-Environmental is the leading publication source with 711 records. Five major research areas on SCR are identified and elaborated, including catalyst, reductant, deactivation, mechanism, and others. Zeolite is the most widely studied SCR catalyst, while copper, silver, platinum, and iron are the most popular metal elements in catalyst. Ammonia (NH3) is dominated among various SCR reductants, while hydrocarbon reductant has gained more attention. Sulfur dioxide (SO2) and vapor are the two most concerned factors leading to catalyst deactivation, and catalyst regeneration is also an important research topic. Density functional theory (DFT), in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and kinetics are the most widely used methods to conduct mechanism study. The studies on "low temperature," "atomic-scale insight," "elemental mercury," "situ DIRFTS investigation," "arsenic poisoning," "SPOA-34," "Cu-CHA catalyst," "TiO2 catalyst," and "Ce catalyst" have been the hotspots in recent years.


Assuntos
Óxidos de Nitrogênio , Substâncias Redutoras , Humanos , Oxirredução , Óxidos de Nitrogênio/química , Amônia/química , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA