Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Cancer ; 155(4): 766-775, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38594805

RESUMO

The inconsistency between mismatch repair (MMR) protein immunohistochemistry (IHC) and microsatellite instability PCR (MSI-PCR) methods has been widely reported. We aim to investigate the prognosis and the effect of immunotherapy in dMMR by IHC but MSS by MSI-PCR (dMMR&MSS) colorectal cancer (CRC) patients. A microsatellite instability (MSI) predicting model was established to help find dMMR&MSS patients. MMR and MSI states were detected by the IHC and MSI-PCR in 1622 CRC patients (ZS6Y-1 cohort). Logistic regression analysis was used to screen clinical features to construct an MSI-predicting nomogram. We propose a new nomogram-based assay to find patients with dMMR&MSS, in which the MSI-PCR assay only detects dMMR patients with MSS predictive results. We applied the new strategy to a random cohort of 248 CRC patients (ZS6Y-2 cohort). The consistency of MMR IHC and MSI-PCR in the ZS6Y-1 cohort was 95.7% (1553/1622). Both pMMR&MSS and dMMR&MSS groups experienced significantly shorter overall survival (OS) than those in dMMR by IHC and MSI-H by MSI-PCR (dMMR&MSI-H) group (hazard ratio [HR] = 2.429, 95% confidence interval [CI]: 1.89-3.116, p < .01; HR = 21.96, 95% CI: 7.24-66.61, p < .01). The dMMR&MSS group experienced shorter OS than the pMMR&MSS group, but the difference did not reach significance (log rank test, p = .0686). In the immunotherapy group, the progression-free survival of dMMR&MSS patients was significantly shorter than that of dMMR&MSI-H patients (HR = 13.83, 95% CI: 1.508-126.8, p < .05). The ZS6Y-MSI-Pre nomogram (C-index = 0.816, 95% CI: 0.792-0.841, already online) found 66% (2/3) dMMR&MSS patients in the ZS6Y-2 cohort. There are significant differences in OS and immunotherapy effect between dMMR&MSI-H and dMMR&MSS patients. Our prediction model provides an economical way to screen dMMR&MSS patients.


Assuntos
Neoplasias Colorretais , Reparo de Erro de Pareamento de DNA , Imunoterapia , Instabilidade de Microssatélites , Nomogramas , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/terapia , Neoplasias Colorretais/imunologia , Feminino , Masculino , Prognóstico , Pessoa de Meia-Idade , Reparo de Erro de Pareamento de DNA/genética , Imunoterapia/métodos , Idoso , Imuno-Histoquímica , Adulto , Biomarcadores Tumorais/genética
2.
Langmuir ; 40(18): 9688-9701, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38654502

RESUMO

Rubidium (Rb) and cesium (Cs) have important applications in highly technical fields. Salt lakes contain huge reserves of Rb and Cs with industrial significance, which can be utilized after extraction. In this study, a composite magnetic adsorbent (Fe3O4@ZIF-8@AMP, AMP = ammonium phosphomolybdate) was prepared and its adsorption properties for Rb+ and Cs+ were studied in simulated and practical brine. The structure of the adsorbent was characterized by SEM, XRD, N2 adsorption-desorption, FT-IR, and vibrating sample magnetometer (VSM). The adsorbent had good adsorption affinity for Rb+ and Cs+. The Langmuir model and pseudo-second-order dynamics described the adsorbing isotherm and kinetic dates, respectively. The adsorption capacity and adsorption rate of Fe3O4@ZIF-8@AMP were increased by 1.86- and 2.5-fold compared with those of powdered crystal AMP, owing to the large specific surface area and high dispersibility of the adsorbent in the solution. The adsorbent was rapidly separated from the solution within 17 s using an applied magnetic field owing to the good magnetic properties. The composite adsorbent selectively adsorbed Rb+ and Cs+ from the practical brine even in the presence of a large number of coexisting ions. The promising adsorbent can be used to extract Rb+ and Cs+ from aqueous solutions.

3.
J Biochem Mol Toxicol ; 38(4): e23707, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38622979

RESUMO

Heart failure remains a global threaten to public health, cardiac fibrosis being a crucial event during the development and progression of heart failure. Reportedly, M2 macrophages might affect endothelial cell (ECs) and fibroblast proliferation and functions through paracrine signaling, participating in myocardial fibrosis. In this study, differentially expressed paracrine factors between M0/1 and M2 macrophages were analyzed and the expression of TNFSF13 was most significant in M2 macrophages. Culture medium (CM) of M2 (M2 CM) coculture to ECs and cardiac fibroblasts (CFbs) significantly promoted the cell proliferation of ECs and CFbs, respectively, and elevated α-smooth muscle actin (α-SMA), collagen I, and vimentin levels within both cell lines; moreover, M2 CM-induced changes in ECs and CFbs were partially abolished by TNFSF13 knockdown in M2 macrophages. Lastly, the NF-κB and Akt signaling pathways were proved to participate in TNFSF13-mediated M2 CM effects on ECs and CFbs. In conclusion, TNFSF13, a paracrine factor upregulated in M2 macrophages, could mediate the promotive effects of M2 CM on EC and CFb proliferation and fibrogenic alterations.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Humanos , Cardiomiopatias/metabolismo , Células Endoteliais/metabolismo , Fibroblastos/metabolismo , Macrófagos/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo
4.
BMC Pulm Med ; 24(1): 302, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926685

RESUMO

BACKGROUND: This study aims to construct a model predicting the probability of RF in AECOPD patients upon hospital admission. METHODS: This study retrospectively extracted data from MIMIC-IV database, ultimately including 3776 AECOPD patients. The patients were randomly divided into a training set (n = 2643) and a validation set (n = 1133) in a 7:3 ratio. First, LASSO regression analysis was used to optimize variable selection by running a tenfold k-cyclic coordinate descent. Subsequently, a multifactorial Cox regression analysis was employed to establish a predictive model. Thirdly, the model was validated using ROC curves, Harrell's C-index, calibration plots, DCA, and K-M curve. RESULT: Eight predictive indicators were selected, including blood urea nitrogen, prothrombin time, white blood cell count, heart rate, the presence of comorbid interstitial lung disease, heart failure, and the use of antibiotics and bronchodilators. The model constructed with these 8 predictors demonstrated good predictive capabilities, with ROC curve areas under the curve (AUC) of 0.858 (0.836-0.881), 0.773 (0.746-0.799), 0.736 (0.701-0.771) within 3, 7, and 14 days in the training set, respectively and the C-index was 0.743 (0.723-0.763). Additionally, calibration plots indicated strong consistency between predicted and observed values. DCA analysis demonstrated favorable clinical utility. The K-M curve indicated the model's good reliability, revealed a significantly higher RF occurrence probability in the high-risk group than that in the low-risk group (P < 0.0001). CONCLUSION: The nomogram can provide valuable guidance for clinical practitioners to early predict the probability of RF occurrence in AECOPD patients, take relevant measures, prevent RF, and improve patient outcomes.


Assuntos
Unidades de Terapia Intensiva , Humanos , Masculino , Feminino , Estudos Retrospectivos , Idoso , Unidades de Terapia Intensiva/estatística & dados numéricos , Pessoa de Meia-Idade , Bases de Dados Factuais , Curva ROC , Medição de Risco/métodos , Idoso de 80 Anos ou mais , Nomogramas , Fatores de Risco , Doença Pulmonar Obstrutiva Crônica
5.
BMC Med Educ ; 24(1): 284, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486182

RESUMO

BACKGROUND: With the emergence of numerous scientific outputs, growing attention is paid to research misconduct. This study aimed to investigate knowledge, attitudes and practices about research misconduct among medical residents in southwest China. METHODS: A cross-sectional study was conducted in southwest China from November 2022 through March 2023. The links to the questionnaire were sent to the directors of the teaching management department in 17 tertiary hospitals. Answers were collected and analyzed. Logistic regression analysis was performed to explore the factors associated with research misconduct among residents. RESULTS: 6200 residents were enrolled in the study, and 88.5% of participants attended a course on research integrity, but 53.7% of participants admitted to having committed at least one form of research misconduct. Having a postgraduate or above, publishing papers as the first author or corresponding author, attending a course on research integrity, lower self-reported knowledge on research integrity and lower perceived consequences for research misconduct were positively correlated to research misconduct. Serving as a primary investigator for a research project was negatively associated with research misconduct. Most residents (66.3%) agreed that the reason for research misconduct is that researchers lack research ability. CONCLUSIONS: The high self-reported rate of research misconduct among residents in southwest China underscores a universal necessity for enhancing research integrity courses in residency programs. The ineffectiveness of current training in China suggests a possible global need for reevaluating and improving educational approaches to foster research integrity. Addressing these challenges is imperative not only for the credibility of medical research and patient care in China but also for maintaining the highest ethical standards in medical education worldwide. Policymakers, educators, and healthcare leaders on a global scale should collaborate to establish comprehensive strategies that ensure the responsible conduct of research, ultimately safeguarding the integrity of medical advancements and promoting trust in scientific endeavors across borders.


Assuntos
Internato e Residência , Má Conduta Científica , Humanos , Estudos Transversais , Conhecimentos, Atitudes e Prática em Saúde , China
6.
Anal Chem ; 95(2): 1057-1064, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36602544

RESUMO

Electron paramagnetic resonance (EPR) spectroscopy and imaging coupled with the use of suitable probes is a promising tool for assessment of the tumor microenvironment (TME). Measurement of multiple TME parameters by EPR is very desirable but challenging. Herein, we designed and synthesized a class of negative-charged trityl quinodimethane MTPs as unimolecular triple-function extracellular probes for redox, pH, and oxygen (O2) levels. Using the deuterated analogue, dMTP5, which has an optimal pKa as well as high sensitivity to bioreduction and O2, we reasonably evaluated pH effects on efflux of reducing agents from HepG2 cells and cellular O2 consumption.


Assuntos
Oxigênio , Substâncias Redutoras , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Oxigênio/química , Oxirredução , Concentração de Íons de Hidrogênio
7.
Cell Biol Int ; 47(9): 1488-1490, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37366569

RESUMO

Laccase domain-containing 1 (LACC1) protein is an enzyme highly expressed in inflammatory macrophages, and studies have shown that it has a key role in diseases such as inflammatory bowel disease, arthritis, and microbial infections. Therefore, in this review, we focus on LACC1-mediated catalysis. In detail, LACC1 converts l-CITrulline (l-CIT) to l-ORNithine (l-ORN) and isocyanic acid in mice and humans and acts as a bridge between proinflammatory nitric oxide synthase (NOS2) and polyamine immunometabolism, thus exerting anti-inflammatory and antibacterial effects. Considering the actions of LACC1, targeting LACC1 may be a potent therapeutic avenue for inflammation-related diseases and microbial infection diseases.


Assuntos
Artrite , Doenças Inflamatórias Intestinais , Humanos , Camundongos , Animais , Lacase/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Macrófagos/metabolismo , Artrite/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Óxido Nítrico/metabolismo
8.
Pestic Biochem Physiol ; 189: 105312, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36549824

RESUMO

Previously, wax + cinnamaldehyde (WCA) was proven to be able to effectively alleviate fruit decay and induce resistance in harvested Satsuma mandarin (Citrus unshiu). However, the potential molecular mechanism is largely unknown. In the present study, transcriptomics, metabolomics and biochemical analyses were combined to clarify this process. Transcriptomic analysis revealed that the expression of genes involved in secondary metabolites and related to pathogenesis and the phenylpropanoid pathway were significantly influenced by WCA treatment. In addition, metabolite profiling revealed that metabolites in the phenylpropanoid pathway were also predominantly impacted after WCA treatment. Correspondingly, enzymatic activities and gene expression involved in the phenylpropanoid pathway were positively regulated, especially in the first 24 h, resulting in increased levels of total phenolics, flavonoids and other secondary metabolites. Fruit inoculation experiments showed that WCA treatment significantly reduced the development of citrus green mold and sour rot while having no adverse effects on the edible quality of the tested citrus fruit. Our study confirms the potential role of WCA exposure in citrus to induce resistance through the phenylpropanoid pathway.


Assuntos
Citrus , Citrus/genética , Citrus/química , Citrus/metabolismo , Transcriptoma , Acroleína/farmacologia , Flavonoides/farmacologia , Frutas
9.
Pestic Biochem Physiol ; 194: 105501, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532321

RESUMO

The volatility of essential oils greatly limits their industrial applications. Here, we successfully prepared γ-cyclodextrin (γ-CD) inclusion compounds (γ-CDTL) containing thymol (TL) for the control of green mold caused by Penicillium digitatum (P. digitatum) in citrus fruit. In vitro experiment showed that the minimum fungicidal concentration (MFC) of γ-CDTL against the hyphae growth of P. digitatum was 2.0 g/L, and 8 × MFC treatment significantly reduced the occurrence of green mold in citrus fruit and had no adverse effect on fruit quality in vivo test compared to prochloraz. Scanning electron microscopy (SEM), x-ray diffraction (XRD), fourier transform-infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), physical properties and sustained release properties were also performed, results indicated that the hydrogen bonds between TL and γ-CD were the basis for the formation of γ-CDTL. We further investigated the inhibition mechanism of γ-CDTL. SEM and TEM experiments showed that γ-CDTL treatment caused severe damage to the hyphal morphology and cells in 30 min and disrupted the permeability of P. digitatum mycelial cell walls by increasing the chitinase activity, thus accelerating the leakage of intracellular lysates. However, the integrity of the cell membrane was obviously damaged only after 60 min of treatment. In conclusion, we prepared a novel inclusion complex γ-CDTL with obvious antifungal effects and preliminarily elucidated its inclusion mechanism and antifungal mechanism. γ-CDTL might be a potent alternative to chemical fungicides for controlling the postharvest decay of citrus.


Assuntos
Citrus , Fungicidas Industriais , Penicillium , gama-Ciclodextrinas , Timol/farmacologia , Antifúngicos/farmacologia , Citrus/química , Citrus/microbiologia , Espectroscopia de Infravermelho com Transformada de Fourier , gama-Ciclodextrinas/análise , gama-Ciclodextrinas/farmacologia , Fungicidas Industriais/farmacologia , Frutas/microbiologia , Doenças das Plantas/microbiologia
10.
Curr Issues Mol Biol ; 45(1): 110-121, 2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36661494

RESUMO

Background: Brain-derived neurotrophic factor (BDNF), as a member of the nerve growth factor family, has been mentioned more and more frequently in recent literature reports. Among them, content about the male genitourinary system is also increasing. Objective and Rationale: BDNF plays an important role in the male genitourinary system. At the same time, the literature in this field is constantly increasing. Therefore, we systematically summarized the literature in order to more intuitively show the function of BDNF and its receptor in the male genitourinary system and its potential clinical application. Search Methods: An electronic search of, e.g., PubMed, scholar.google and Scopus, for articles relating to BDNF and its receptor in the male genitourinary system. Outcomes: In the male genitourinary system, BDNF and its receptors TrkB and p75 participate in a series of normal physiological activities, such as the maturation and morphogenesis of testes and epididymis and maintenance of isolated sperm motility. Similarly, an imbalance of the circulating concentration of BDNF also mediates the pathophysiological process of many diseases, such as prostate cancer, benign prostatic hyperplasia, male infertility, diabetes erectile dysfunction, penile sclerosis, and bladder fibrosis. As a consequence, we conclude that BDNF and its receptor are key regulatory proteins in the male genitourinary system, which can be used as potential therapeutic targets and markers for disease diagnosis.

11.
Nanotechnology ; 34(7)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36332230

RESUMO

Hierarchical domain structures associated with oxygen octahedra tilting patterns were observed in lead-free (Bi1/2Na1/2)TiO3ceramics using aberration-corrected high-resolution transmission electron microscopy (HRTEM). Three types of domains are induced by distinct mechanisms: the 'orientation-domain' is induced at micrometer scale formed by different tilting orientations of the oxygen octahedra, the 'meso-chemical-domain' occurs at a few tens of nanometer scale by chemical composition variation on the A-site in the ABO3perovskite structure, and the 'nano-cluster-region' runs across several unit-cells with apparent A-site cation segregation with oxygen vacancies clustering around Na cations. Based on HRTEM amplitude contrast imaging (ACI), the correlation between the oxygen octahedral tilting pattern and compositional non-stoichiometry was established. The role of the hierarchical domain structure associated with the tilting patterns of the oxygen octahedra on the ferroelectric behavior of (Bi1/2Na1/2)TiO3is also discussed.

12.
Int J Mol Sci ; 24(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36613954

RESUMO

Cysteine-rich receptor-like kinases (CRKs) are transmembrane proteins that bind to the calcium ion to regulate stress-signaling and plant development-related pathways, as indicated by several pieces of evidence. However, the CRK gene family hasn't been inadequately examined in Brassica napus. In our study, 27 members of the CRK gene family were identified in Brassica napus, which are categorized into three phylogenetic groups and display synteny relationship to the Arabidopsis thaliana orthologs. All the CRK genes contain highly conserved N-terminal PKINASE domain; however, the distribution of motifs and gene structure were variable conserved. The functional divergence analysis between BnaCRK groups indicates a shift in evolutionary rate after duplication events, demonstrating that BnaCRKs might direct a specific function. RNA-Seq datasets and quantitative real-time PCR (qRT-PCR) exhibit the complex expression profile of the BnaCRKs in plant tissues under multiple stresses. Nevertheless, BnaA06CRK6-1 and BnaA08CRK8 from group B were perceived to play a predominant role in the Brassica napus stress signaling pathway in response to drought, salinity, and Sclerotinia sclerotiorum infection. Insights gained from this study improve our knowledge about the Brassica napus CRK gene family and provide a basis for enhancing the quality of rapeseed.


Assuntos
Arabidopsis , Brassica napus , Brassica napus/genética , Brassica napus/metabolismo , Cistina/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
13.
Int J Mol Sci ; 23(24)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36555841

RESUMO

Plant-pathogen interactions induce a signal transmission series that stimulates the plant's host defense system against pathogens and this, in turn, leads to disease resistance responses. Plant innate immunity mainly includes two lines of the defense system, called pathogen-associated molecular pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). There is extensive signal exchange and recognition in the process of triggering the plant immune signaling network. Plant messenger signaling molecules, such as calcium ions, reactive oxygen species, and nitric oxide, and plant hormone signaling molecules, such as salicylic acid, jasmonic acid, and ethylene, play key roles in inducing plant defense responses. In addition, heterotrimeric G proteins, the mitogen-activated protein kinase cascade, and non-coding RNAs (ncRNAs) play important roles in regulating disease resistance and the defense signal transduction network. This paper summarizes the status and progress in plant disease resistance and disease resistance signal transduction pathway research in recent years; discusses the complexities of, and interactions among, defense signal pathways; and forecasts future research prospects to provide new ideas for the prevention and control of plant diseases.


Assuntos
Resistência à Doença , Transdução de Sinais , Resistência à Doença/genética , Plantas/genética , Reguladores de Crescimento de Plantas , Doenças das Plantas/genética , Imunidade Vegetal/genética
14.
BMC Plant Biol ; 21(1): 286, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34157966

RESUMO

BACKGROUND: Brassica napus is an essential crop for oil and livestock feed. Eventually, this crop's economic interest is at the most risk due to anthropogenic climate change. DELLA proteins constitute a significant repressor of plant growth to facilitate survival under constant stress conditions. DELLA proteins lack DNA binding domain but can interact with various transcription factors or transcription regulators of different hormonal families. Significant progress has been made on Arabidopsis and cereal plants. However, no comprehensive study regarding DELLA proteins has been delineated in rapeseed. RESULTS: In our study, we have identified 10 BnaDELLA genes. All of the BnaDELLA genes are closely related to five AtDELLA genes, suggesting a relative function and structure. Gene duplication and synteny relationship among Brassica. napus, Arabidopsis. thaliana, Brassica rapa, Brassica oleracea, and Brassica nigra genomes were also predicted to provide valuable insights into the BnaDELLA gene family evolutionary characteristics. Chromosomal mapping revealed the uneven distribution of BnaDELLA genes on eight chromosomes, and site-specific selection assessment proposes BnaDELLA genes purifying selection. The motifs composition in all BnaDELLA genes is inconsistent; however, every BnaDELLA gene contains 12 highly conserved motifs, encoding DELLA and GRAS domains. The two known miRNAs (bna-miR6029 and bna-miR603) targets BnaC07RGA and BnaA09GAI, were also predicted. Furthermore, quantitative real-time PCR (qRT-PCR) analysis has exhibited the BnaDELLA genes diverse expression patterns in the root, mature-silique, leaf, flower, flower-bud, stem, shoot-apex, and seed. Additionally, cis-acting element prediction shows that all BnaDELLA genes contain light, stress, and hormone-responsive elements on their promoters. The gene ontology (GO) enrichment report indicated that the BnaDELLA gene family might regulate stress responses. Combine with transcriptomic data used in this study, we detected the distinct expression patterns of BnaDELLA genes under biotic and abiotic stresses. CONCLUSION: In this study, we investigate evolution feature, genomic structure, miRNAs targets, and expression pattern of the BnaDELLA gene family in B. napus, which enrich our understanding of BnaDELLA genes in B. napus and suggests modulating individual BnaDELLA expression is a promising way to intensify rapeseed stress tolerance and harvest index.


Assuntos
Brassica napus/genética , Genes de Plantas/genética , Brassica napus/fisiologia , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Evolução Molecular , Genes de Plantas/fisiologia , Estudo de Associação Genômica Ampla , MicroRNAs/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , RNA de Plantas/genética , Alinhamento de Sequência , Estresse Fisiológico , Transcriptoma
15.
J Org Chem ; 86(12): 8351-8364, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34043350

RESUMO

Tetrathiatriarylmethyl (trityl) radicals have been recently shown to react with biological oxidoreductants including glutathione (GSH), ascorbic acid (Asc), and superoxide anion radical (O2•-). However, how the substituents affect the reactivity of trityl radicals is still unknown. In this work, five asymmetric trityl radicals were synthesized and their reactivities with GSH, Asc, and O2•- investigated. Under aerobic conditions, GSH induces fast decays for the thioether- (TSA) and N-methyleneglycine-substituted (TGA) derivatives and slow decay for the 4-carboxyphenyl-containing one (TPA). Under anaerobic conditions, the direct reduction of these radicals by GSH also occurs with rate constants (kGSH) from 1.8 × 10-4 M-1 s-1 for TPA to 1.0 × 10-2 M-1 s-1 for TGA. Moreover, these radicals can also react with O2•- with rate constants (kSO) from 1.2 × 103 M-1 s-1 for ET-01 to 1.6 × 104 M-1 s-1 for TGA. Surprisingly, these radicals are completely inert to Asc in both aerobic and anaerobic conditions. Additionally, the substituents exert an important effect on redox potentials of these trityl radicals. This work demonstrates that the redox properties of the trityl radicals strongly depend on their substituents, and TPA with high stability toward GSH shows great potential for intracellular applications.


Assuntos
Compostos de Tritil , Água , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres , Oxirredução
16.
Eur Phys J E Soft Matter ; 44(4): 57, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33877477

RESUMO

In situ observation of precipitation or phase separation induced by solvent addition is important in studying its dynamics. Combined with optical and fluorescence microscopy, microfluidic devices have been leveraged in studying the phase separation in various materials including biominerals, nanoparticles, and inorganic crystals. However, strong scattering from the subphases in the mixture is problematic for in situ study of phase separation with high temporal and spatial resolution. In this work, we present a quasi-2D microfluidic device combined with total internal reflection microscopy as an approach for in situ observation of phase separation. The quasi-2D microfluidic device comprises of a shallow main channel and a deep side channel. Mixing between a solution in the main channel (solution A) and another solution (solution B) in the side channel is predominantly driven by diffusion due to high fluid resistance from the shallow height of the main channel, which is confirmed using fluorescence microscopy. Moreover, relying on diffusive mixing, we can control the composition of the mixture in the main channel by tuning the composition of solution B. We demonstrate the application of our method for in situ observation of asphaltene precipitation and [Formula: see text]-alanine crystallization.


Assuntos
Dispositivos Lab-On-A-Chip , Microscopia , Difusão
17.
Plant Cell Rep ; 40(2): 361-374, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33392730

RESUMO

KEY MESSAGE: MANNANASE7 gene in Brassica napus L. encodes a hemicellulose which located at cell wall or extracellular space and dehiscence-resistance can be manipulated by altering the expression of MANNANASE7. Silique dehiscence is an important physiological process in plant reproductive development, but causes heavy yield loss in crops. The lack of dehiscence-resistant germplasm limits the application of mechanized harvesting and greatly restricts the rapeseed (Brassica napus L.) production. Hemicellulases, together with cellulases and pectinases, play important roles in fruit development and maturation. The hemicellulase gene MANNANASE7 (MAN7) was previously shown to be involved in the development and dehiscence of Arabidopsis (Arabidopsis thaliana) siliques. Here, we cloned BnaA07g12590D (BnMAN7A07), an AtMAN7 homolog from rapeseed, and demonstrate its function in the dehiscence of rapeseed siliques. We found that BnMAN7A07 was expressed in both vegetative and reproductive organs and significantly highly expressed in leaves, flowers and siliques where the abscission or dehiscence process occurs. Subcellular localization experiment showed that BnMAN7A07 was localized in the cell wall. The biological activity of the BnMAN7A07 protein isolated and purified through prokaryotic expression system was verified to catalyse the decomposition of xylan into xylose. Phenotypic studies of RNA interference (RNAi) lines revealed that down-regulation of BnMAN7A07 in rapeseed could significantly enhance silique dehiscence-resistance. In addition, the expression of upstream silique development regulators is altered in BnMAN7A07-RNAi plants, suggesting that a possible feedback regulation mechanism exists in the regulation network of silique dehiscence. Our results demonstrate that dehiscence-resistance can be manipulated by altering the expression of hemicellulase gene BnMAN7A07, which could provide an available genetic resource for breeding practice in rapeseed which is beneficial to mechanized harvest.


Assuntos
Brassica napus/enzimologia , Glicosídeo Hidrolases/metabolismo , Polissacarídeos/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassica napus/genética , Parede Celular/enzimologia , Regulação para Baixo , Espaço Extracelular/enzimologia , Flores/enzimologia , Flores/genética , Regulação da Expressão Gênica de Plantas , Glicosídeo Hidrolases/genética , Manosidases/genética , Manosidases/metabolismo , Melhoramento Vegetal , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
18.
Bull Environ Contam Toxicol ; 106(1): 165-174, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32468076

RESUMO

Adsorbents with the combination of magnetic separation and removal performance are expected for reducing the adverse impact of nuclear pollution. In this study, the core-shell Fe3O4@polydopamine (Fe3O4@PDA) was successfully synthesized and used for removal of uranium (U(VI)) ion from aqueous solution. The abundant N-containing groups derived from PDA exist as the chelate sites for U(VI) and contribute greatly for U(VI) removal. Experimental results show that Fe3O4@PDA (56.39 mg g-1) exhibits greater sorption capacity for U(VI) removal compared with the pure Fe3O4 (9.17 mg g-1). The sorption isotherm can be well fitted with Freundlich model and the sorption process is endothermic and spontaneous. The removal of U(VI) can be explained by the complexation of U(VI) with -NH-, -NH2 and C-O in the surface of Fe3O4@PDA by X-ray photoelectron spectroscopy (XPS) analysis.


Assuntos
Urânio , Adsorção , Indóis , Polímeros , Urânio/análise
19.
BMC Plant Biol ; 20(1): 21, 2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31931712

RESUMO

BACKGROUND: Triacylglycerols (TAGs) are the main composition of plant seed oil. Long-chain acyl-coenzyme A synthetases (LACSs) catalyze the synthesis of long-chain acyl-coenzyme A, which is one of the primary substrates for TAG synthesis. In Arabidopsis, the LACS gene family contains nine members, among which LACS1 and LACS9 have overlapping functions in TAG biosynthesis. However, functional characterization of LACS proteins in rapeseed have been rarely reported. RESULTS: An orthologue of the Arabidopsis LACS2 gene (BnLACS2) that is highly expressed in developing seeds was identified in rapeseed (Brassica napus). The BnLACS2-GFP fusion protein was mainly localized to the endoplasmic reticulum, where TAG biosynthesis occurs. Interestingly, overexpression of the BnLACS2 gene resulted in significantly higher oil contents in transgenic rapeseed plants compared to wild type, while BnLACS2-RNAi transgenic rapeseed plants had decreased oil contents. Furthermore, quantitative real-time PCR expression data revealed that the expression of several genes involved in glycolysis, as well as fatty acid (FA) and lipid biosynthesis, was also affected in transgenic plants. CONCLUSIONS: A long chain acyl-CoA synthetase, BnLACS2, located in the endoplasmic reticulum was identified in B. napus. Overexpression of BnLACS2 in yeast and rapeseed could increase oil content, while BnLACS2-RNAi transgenic rapeseed plants exhibited decreased oil content. Furthermore, BnLACS2 transcription increased the expression of genes involved in glycolysis, and FA and lipid synthesis in developing seeds. These results suggested that BnLACS2 is an important factor for seed oil production in B. napus.


Assuntos
Brassica napus , Coenzima A Ligases , Sementes/metabolismo , Triglicerídeos/biossíntese , Brassica napus/genética , Brassica napus/metabolismo , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Ácidos Graxos/biossíntese , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Glicólise/genética , Metabolismo dos Lipídeos/genética , Óleos de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Interferência de RNA , Triglicerídeos/genética
20.
Plant Biotechnol J ; 18(5): 1255-1270, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31693306

RESUMO

Sclerotinia stem rot (SSR) caused by Sclerotinia sclerotiorum is a devastating disease of rapeseed (Brassica napus L.). To date, the genetic mechanisms of rapeseed' interactions with S. sclerotiorum are not fully understood, and molecular-based breeding is still the most effective control strategy for this disease. Here, Arabidopsis thaliana GDSL1 was characterized as an extracellular GDSL lipase gene functioning in Sclerotinia resistance. Loss of AtGDSL1 function resulted in enhanced susceptibility to S. sclerotiorum. Conversely, overexpression of AtGDSL1 in B. napus enhanced resistance, which was associated with increased reactive oxygen species (ROS) and salicylic acid (SA) levels, and reduced jasmonic acid levels. In addition, AtGDSL1 can cause an increase in lipid precursor phosphatidic acid levels, which may lead to the activation of downstream ROS/SA defence-related pathways. However, the rapeseed BnGDSL1 with highest sequence similarity to AtGDSL1 had no effect on SSR resistance. A candidate gene association study revealed that only one AtGDSL1 homolog from rapeseed, BnaC07g35650D (BnGLIP1), significantly contributed to resistance traits in a natural B. napus population, and the resistance function was also confirmed by a transient expression assay in tobacco leaves. Moreover, genomic analyses revealed that BnGLIP1 locus was embedded in a selected region associated with SSR resistance during the breeding process, and its elite allele type belonged to a minor allele in the population. Thus, BnGLIP1 is the functional equivalent of AtGDSL1 and has a broad application in rapeseed S. sclerotiorum-resistance breeding.


Assuntos
Arabidopsis , Ascomicetos , Brassica napus , Arabidopsis/genética , Brassica napus/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA