Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
EMBO Rep ; 25(3): 1589-1622, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38297188

RESUMO

Embryonic genome activation (EGA) occurs during preimplantation development and is characterized by the initiation of de novo transcription from the embryonic genome. Despite its importance, the regulation of EGA and the transcription factors involved in this process are poorly understood. Paired-like homeobox (PRDL) family proteins are implicated as potential transcriptional regulators of EGA, yet the PRDL-mediated gene regulatory networks remain uncharacterized. To investigate the function of PRDL proteins, we are identifying the molecular interactions and the functions of a subset family of the Eutherian Totipotent Cell Homeobox (ETCHbox) proteins, seven PRDL family proteins and six other transcription factors (TFs), all suggested to participate in transcriptional regulation during preimplantation. Using mass spectrometry-based interactomics methods, AP-MS and proximity-dependent biotin labeling, and chromatin immunoprecipitation sequencing we derive the comprehensive regulatory networks of these preimplantation TFs. By these interactomics tools we identify more than a thousand high-confidence interactions for the 21 studied bait proteins with more than 300 interacting proteins. We also establish that TPRX2, currently assigned as pseudogene, is a transcriptional activator.


Assuntos
Proteínas de Homeodomínio , Fatores de Transcrição , Humanos , Fatores de Transcrição/metabolismo , Proteínas de Homeodomínio/genética , Genes Homeobox , Genoma
2.
J Am Soc Nephrol ; 26(9): 2118-28, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25556170

RESUMO

The Wilms' tumor suppressor gene 1 (WT1) encodes a zinc finger transcription factor. Mutation of WT1 in humans leads to Wilms' tumor, a pediatric kidney tumor, or other kidney diseases, such as Denys-Drash and Frasier syndromes. We showed previously that inactivation of WT1 in podocytes of adult mice results in proteinuria, foot process effacement, and glomerulosclerosis. However, the WT1-dependent transcriptional network regulating podocyte development and maintenance in vivo remains unknown. Here, we performed chromatin immunoprecipitation followed by high-throughput sequencing with glomeruli from wild-type mice. Additionally, we performed a cDNA microarray screen on an inducible podocyte-specific WT1 knockout mouse model. By integration of cistromic and transcriptomic analyses, we identified the WT1 targetome in mature podocytes. To further analyze the function and targets of WT1 in podocyte maturation, we used an Nphs2-Cre model, in which WT1 is deleted during podocyte differentiation. These mice display anuria and kidney hemorrhage and die within 24 hours after birth. To address the evolutionary conservation of WT1 targets, we performed functional assays using zebrafish as a model and identified Nphs2, Mafb, and Magi2 as novel WT1 target genes required for podocyte development. Our data also show that both Mafb and Magi2 are required for normal development of the embryonic zebrafish kidney. Collectively, our work provides insights into the transcriptional networks controlled by WT1 and identifies novel WT1 target genes that mediate the function of WT1 in podocyte differentiation and maintenance.


Assuntos
Diferenciação Celular/genética , Regulação da Expressão Gênica , Genes do Tumor de Wilms/fisiologia , Podócitos/fisiologia , Proteínas Repressoras/genética , Proteínas WT1/genética , Proteínas de Peixe-Zebra/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Perfilação da Expressão Gênica , Guanilato Quinases/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fator de Transcrição MafB/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Análise de Sequência com Séries de Oligonucleotídeos , Peixe-Zebra
3.
J Exp Clin Cancer Res ; 42(1): 198, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37550764

RESUMO

BACKGROUND: Aberrant somatic genomic alteration including copy number amplification is a hallmark of cancer genomes. We previously profiled genomic landscapes of prostate cancer (PCa), yet the underlying causal genes with prognostic potential has not been defined. It remains unclear how a somatic genomic event cooperates with inherited germline variants contribute to cancer predisposition and progression. METHODS: We applied integrated genomic and clinical data, experimental models and bioinformatic analysis to identify GATA2 as a highly prevalent metastasis-associated genomic amplification in PCa. Biological roles of GATA2 in PCa metastasis was determined in vitro and in vivo. Global chromatin co-occupancy and co-regulation of GATA2 and SMAD4 was investigated by coimmunoprecipitation, ChIP-seq and RNA-seq assays. Tumor cellular assays, qRT-PCR, western blot, ChIP, luciferase assays and CRISPR-Cas9 editing methods were performed to mechanistically understand the cooperation of GATA2 with SMAD4 in promoting TGFß1 and AR signaling and mediating inherited PCa risk and progression. RESULTS: In this study, by integrated genomics and experimental analysis, we identified GATA2 as a prevalent metastasis-associated genomic amplification to transcriptionally augment its own expression in PCa. Functional experiments demonstrated that GATA2 physically interacted and cooperated with SMAD4 for genome-wide chromatin co-occupancy and co-regulation of PCa genes and metastasis pathways like TGFß signaling. Mechanistically, GATA2 was cooperative with SMAD4 to enhance TGFß and AR signaling pathways, and activated the expression of TGFß1 via directly binding to a distal enhancer of TGFß1. Strinkingly, GATA2 and SMAD4 globally mediated inherited PCa risk and formed a transcriptional complex with HOXB13 at the PCa risk-associated rs339331/6q22 enhancer, leading to increased expression of the PCa susceptibility gene RFX6. CONCLUSIONS: Our study prioritizes causal genomic amplification genes with prognostic values in PCa and reveals the pivotal roles of GATA2 in transcriptionally activating the expression of its own and TGFß1, thereby co-opting to TGFß1/SMAD4 signaling and RFX6 at 6q22 to modulate PCa predisposition and progression.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/patologia , Próstata/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Cromatina , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteína Smad4/genética , Proteína Smad4/metabolismo , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo
4.
Nat Commun ; 13(1): 766, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35140242

RESUMO

Transcription factors (TFs) interact with several other proteins in the process of transcriptional regulation. Here, we identify 6703 and 1536 protein-protein interactions for 109 different human TFs through proximity-dependent biotinylation (BioID) and affinity purification mass spectrometry (AP-MS), respectively. The BioID analysis identifies more high-confidence interactions, highlighting the transient and dynamic nature of many of the TF interactions. By performing clustering and correlation analyses, we identify subgroups of TFs associated with specific biological functions, such as RNA splicing or chromatin remodeling. We also observe 202 TF-TF interactions, of which 118 are interactions with nuclear factor 1 (NFI) family members, indicating uncharacterized cross-talk between NFI signaling and other TF signaling pathways. Moreover, TF interactions with basal transcription machinery are mainly observed through TFIID and SAGA complexes. This study provides a rich resource of human TF interactions and also act as a starting point for future studies aimed at understanding TF-mediated transcription.


Assuntos
Mapas de Interação de Proteínas , Fatores de Transcrição , Biotinilação , Cromatina , Cromatografia de Afinidade , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Células HEK293 , Humanos , Espectrometria de Massas , Fatores de Transcrição NFI/genética , Proteômica
5.
Cell Biosci ; 12(1): 52, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35505422

RESUMO

BACKGROUND: Von Hippel-Lindau (VHL) disease is an autosomal dominant genetic neoplastic disorder caused by germline mutation or deletion of the VHL gene, characterized by the tendency to develop multisystem benign or malignant tumors. The mechanism of VHL mutants in pathogenicity is poorly understand. RESULTS: Here we identified heterozygous missense mutations c.193T > C and c.194C > G in VHL in several patients from two Chinese families. These mutations are predicted to cause Serine (c.193T > C) to Proline and Tryptophan (c.194C > G) substitution at residue 65 of VHL protein (p.Ser65Pro and Ser65Trp). Ser65 residue, located within the ß-domain and nearby the interaction sites with hypoxia-inducing factor α (HIFα), is highly conserved among different species. We observed gain of functions in VHL mutations, thereby stabilizing HIF2α protein and reprograming HIF2α genome-wide target gene transcriptional programs. Further analysis of independent cohorts of patients with renal carcinoma revealed specific HIF2α gene expression signatures in the context of VHL Ser65Pro or Ser65Trp mutation, showing high correlations with hypoxia and epithelial-mesenchymal transition signaling activities and strong associations with poor prognosis. CONCLUSIONS: Together, our findings highlight the crucial role of pVHL-HIF dysregulation in VHL disease and strengthen the clinical relevance and significance of the missense mutations of Ser65 residue in pVHL in the familial VHL disease.

6.
Cells ; 9(2)2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-32023845

RESUMO

Generation of kidney organoids from pluripotent stem cells (PSCs) is regarded as a potentially powerful way to study kidney development, disease, and regeneration. Direct differentiation of PSCs towards renal lineages is well studied; however, most of the studies relate to generation of nephron progenitor population from PSCs. Until now, differentiation of PSCs into ureteric bud (UB) progenitor cells has had limited success. Here, we describe a simple, efficient, and reproducible protocol to direct differentiation of mouse embryonic stem cells (mESCs) into UB progenitor cells. The mESC-derived UB cells were able to induce nephrogenesis when co-cultured with primary metanephric mesenchyme (pMM). In generated kidney organoids, the embryonic pMM developed nephron structures, and the mESC-derived UB cells formed numerous collecting ducts connected with the nephron tubules. Altogether, our study established an uncomplicated and reproducible platform to generate ureteric bud progenitors from mouse embryonic stem cells.


Assuntos
Rim/citologia , Células-Tronco Embrionárias Murinas/citologia , Organogênese , Ureter/citologia , Animais , Diferenciação Celular , Linhagem Celular , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Mesoderma/citologia , Camundongos , Organoides/citologia
7.
Sci Rep ; 8(1): 16618, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30413738

RESUMO

The kidney is a complex organ that is comprised of thousands of nephrons developing through reciprocal inductive interactions between metanephric mesenchyme (MM) and ureteric bud (UB). The MM undergoes mesenchymal to epithelial transition (MET) in response to the signaling from the UB. The secreted protein Wnt4, one of the Wnt family members, is critical for nephrogenesis as mouse Wnt4-/- mutants fail to form pretubular aggregates (PTA) and therefore lack functional nephrons. Here, we generated mouse embryonic stem cell (mESC) line lacking Wnt4 by applying the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated systems 9 (Cas9). We describe here, differentiation of the wild type and Wnt4 knockout mESCs into kidney progenitors, and such cells induced to undergo nephrogenesis by the mouse E11.5 UB mediated induction. The wild type three-dimensional (3D) self-organized organoids depict appropriately segmented nephron structures, while the Wnt4-deficient organoids fail to undergo the MET, as is the case in the phenotype of the Wnt4 knockout mouse model in vivo. In summary, we have established a platform that combine CRISPR/Cas9 and kidney organoid technologies to model kidney development in vitro and confirmed that mutant organoids are able to present similar actions as in the in vivo studies.


Assuntos
Embrião de Mamíferos/citologia , Células-Tronco Embrionárias/citologia , Mesoderma/citologia , Néfrons/citologia , Organogênese , Organoides/citologia , Proteína Wnt4/fisiologia , Animais , Sistemas CRISPR-Cas , Diferenciação Celular , Células Cultivadas , Embrião de Mamíferos/metabolismo , Células-Tronco Embrionárias/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/metabolismo , Camundongos , Camundongos Knockout , Néfrons/metabolismo , Organoides/metabolismo , Transdução de Sinais , Proteína Wnt4/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA