Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Undersea Hyperb Med ; 50(3): 265-272, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37708059

RESUMO

Background: Electronic devices remain highly restricted from use during hyperbaric oxygen (HBO2) treatment due to risk of fire in a pressurized, oxygen-rich environment. Over recent decades, point-of- care ultrasound (POCUS) has established utility in most clinical environments except hyperbaric chambers, where only heavily modified POCUS devices have been used. This study evaluated proof of concept, safety, and performance of a wireless off-the-shelf handheld POCUS device in the hyperbaric environment. Materials and Methods: The GE Vscan Air was initially tested in a Class C chamber with 100% nitrogen up to 4.0 ATA and monitored. Second, the Vscan Air was paired with an encased Apple iPad, tested previously for hyperbaric use, and both were pressurized to 2.4 ATA in a Class A chamber (21% oxygen) and evaluated. Similarly, it was then tested at 2.8 ATA and also paired wirelessly with an iPad outside the chamber. Device temperature, image quality, functionality, and wireless connection were tested continuously. Results: The GE Vscan Air automatically shut off due to power button depression during initial compression; thus the power button was punctured with an 18-gauge needle to equalize gas pressure. Thereafter, the system performed well throughout all tests without degradation in function or image quality. The device did not overheat nor reach temperatures concerning for fire hazard. Further, wireless connection to out-of-chamber devices was maintained. Conclusions: Our results suggest that the GE Vscan Air can be used with minor modification in a multi- place hyperbaric chamber. Wireless functionality allows for pairing with a screen and device outside the chamber.

2.
Undersea Hyperb Med ; 48(3): 221-226, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34390626

RESUMO

Historically, electronic devices have been generally prohibited during hyperbaric oxygen (HBO2) therapy due to risk of fire in a pressurized, oxygen-rich environment. Point-of-care ultrasound (POCUS) however has emerged as a useful imaging modality in diverse clinical settings. Hyperbaric chambers treating critically ill patients would benefit from the application of POCUS at pressure to make real-time patient assessments. Thus far, POCUS during HBO2 therapy has been limited due to required equipment modifications to meet safety standards. Here we demonstrate proof of concept, safety, and successful performance of an off-the-shelf handheld POCUS system (SonoSite iViz) in a clinical hyperbaric environment without need for modification.


Assuntos
Oxigenoterapia Hiperbárica , Testes Imediatos , Estudo de Prova de Conceito , Ultrassonografia/instrumentação , Cuidados Críticos , Estado Terminal , Fontes de Energia Elétrica , Desenho de Equipamento , Segurança de Equipamentos , Estudos de Viabilidade , Temperatura Alta , Humanos , Fatores de Tempo
5.
Interact J Med Res ; 13: e53821, 2024 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-39078624

RESUMO

BACKGROUND: Hyperbaric oxygen (HBO2) treatment is used across a range of medical specialties for a variety of applications, particularly where hypoxia and inflammation are important contributors. Because of its hypoxia-relieving and anti-inflammatory effects HBO2 may be useful for new indications not currently approved by the Undersea and Hyperbaric Medical Society. Identifying these new applications for HBO2 is difficult because individual centers may only treat a few cases and not track the outcomes consistently. The web-based International Multicenter Registry for Hyperbaric Oxygen Therapy captures prospective outcome data for patients treated with HBO2 therapy. These data can then be used to identify new potential applications for HBO2, which has relevance for a range of medical specialties. OBJECTIVE: Although hyperbaric medicine has established indications, new ones continue to emerge. One objective of this registry study was to identify cases where HBO2 has been used for conditions falling outside of current Undersea and Hyperbaric Medical Society-approved indications and present outcome data for them. METHODS: This descriptive study used data from a web-based, multicenter, international registry of patients treated with HBO2. Participating centers agree to collect data on all patients treated using standard outcome measures, and individual centers send deidentified data to the central registry. HBO2 treatment programs in the United States, the United Kingdom, and Australia participate. Demographic, outcome, complication, and treatment data, including pre- and posttreatment quality of life questionnaires (EQ-5D-5L) were collected for individuals referred for HBO2 treatment. RESULTS: Out of 9726 patient entries, 378 (3.89%) individuals were treated for 45 emerging indications. Post-COVID-19 condition (PCC; also known as postacute sequelae of COVID-19; 149/378, 39.4%), ulcerative colitis (47/378, 12.4%), and Crohn disease (40/378, 10.6%) accounted for 62.4% (n=236) of the total cases. Calciphylaxis (20/378, 5.3%), frostbite (18/378, 4.8%), and peripheral vascular disease-related wounds (12/378, 3.2%) accounted for a further 13.2% (n=50). Patients with PCC reported significant improvement on the Neurobehavioral Symptom Inventory (NSI score: pretreatment=30.6; posttreatment=14.4; P<.001). Patients with Crohn disease reported significantly improved quality of life (EQ-5D score: pretreatment=53.8; posttreatment=68.8), and 5 (13%) reported closing a fistula. Patients with ulcerative colitis and complete pre- and post-HBO2 data reported improved quality of life and lower scores on a bowel questionnaire examining frequency, blood, pain, and urgency. A subset of patients with calciphylaxis and arterial ulcers also reported improvement. CONCLUSIONS: HBO2 is being used for a wide range of possible applications across various medical specialties for its hypoxia-relieving and anti-inflammatory effects. Results show statistically significant improvements in patient-reported outcomes for inflammatory bowel disease and PCC. HBO2 is also being used for frostbite, pyoderma gangrenosum, pterygium, hypospadias repair, and facial filler procedures. Other indications show evidence for improvement, and the case series for all indications is growing in the registry. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.2196/18857.

6.
Aerosp Med Hum Perform ; 94(1): 11-17, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36757235

RESUMO

INTRODUCTION: The U.S. Navy experienced a series of physiological events in aircrew involving primarily the F/A-18 airframe related to rapid decompression of cabin pressures, of which aviation decompression sickness (DCS) was felt to contribute. The underlying pathophysiology of aviation DCS is the same as that of diving-related. However, based on the innate multifactorial circumstances surrounding hypobaric DCS, in clinical practice it continues to be unpredictable and less familiar as it falls at the intersect of aerospace and hyperbaric medicine. This retrospective study aimed to review the case series diagnosed as aviation DCS in a collaborative effort between aerospace specialists and hyperbaricists to increase appropriate identification and treatment of hypobaric DCS.METHODS: We identified 18 cases involving high-performance aircraft emergently treated as aviation DCS at a civilian hyperbaric chamber. Four reviewers with dual training in aviation and hyperbaric medicine retrospectively reviewed cases and categorized presentations as "DCS" or "Alternative Diagnosis".RESULTS: Reviewers identified over half of presenting cases could be attributed to an alternative diagnosis. In events that occurred at flight altitudes below 17,000 ft (5182 m) or with rapid decompression pressure changes under 0.3 atm, DCS was less likely to be the etiology of the presenting symptoms.CONCLUSIONS: Aviation physiological events continue to be difficult to diagnose. This study aimed to better understand this phenomenon and provide additional insight and key characteristics for both flight physicians and hyperbaric physicians. As human exploration continues to challenge the limits of sustainable physiology, the incidence of aerospace DCS may increase and underscores our need to recognize and appropriately treat it.Kutz CJ, Kirby IJ, Grover IR, Tanaka HL. Aviation decompression sickness in aerospace and hyperbaric medicine. Aerosp Med Hum Perform. 2023; 94(1):11-17.


Assuntos
Medicina Aeroespacial , Doença da Altitude , Aviação , Doença da Descompressão , Oxigenoterapia Hiperbárica , Humanos , Doença da Descompressão/terapia , Doença da Descompressão/etiologia , Estudos Retrospectivos , Oxigenoterapia Hiperbárica/efeitos adversos , Aviação/educação , Altitude , Descompressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA