RESUMO
Selectivity profiling of compounds is important for kinase drug discovery. To this end, we aimed to develop a broad-range protein kinase assay by synthesizing a novel staurosporine-derived fluorescent probe based on staurosporine and kinase-binding related structural information. Upon structural analysis of staurosporine with kinases, a 4'-methylamine moiety of staurosporine was found to be located on the solvent side of the kinases, to which several linker units can be conjugated by either alkylation or acylation. However, such conjugation was suggested to reduce the binding affinities of the modified compound for several kinases, owing to the elimination of hydrogen bond donor moiety of NH-group from 4'-methylamine and/or steric hindrance by acyl moiety. Based on this structural information, we designed and synthesized a novel staurosporine-based probe without methyl group in order to retain the hydrogen bond donor, similar to unmodified staurosporine. The broad range of the kinase binding assay demonstrated that our novel fluorescent probe is an excellent tool for developing broad-ranging kinase binding assay.
Assuntos
Corantes Fluorescentes/química , Inibidores de Proteínas Quinases/química , Proteínas Quinases/química , Estaurosporina/química , Sítios de Ligação , Ligação Competitiva , Técnicas Biossensoriais , Avaliação Pré-Clínica de Medicamentos/métodos , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/síntese química , Humanos , Ligação de Hidrogênio , Metilaminas/química , Estrutura Molecular , Ligação Proteica , Sensibilidade e Especificidade , Estaurosporina/síntese química , Relação Estrutura-AtividadeRESUMO
Human serine palmitoyltransferase (SPT) is a PLP-dependent enzyme residing in the endoplasmic reticulum. It catalyzes the synthesis of 3-ketodihydrosphingosine (3-KDS) from the substrates palmitoyl-CoA and l-serine. It is a rate-limiting enzyme for sphingolipid synthesis in cells. In the present study, we characterized and pharmacologically profiled a series of tetrahydropyrazolopyridine derivatives that potently inhibit human SPT enzymatic activity, including two cell-active derivatives and one fluorescent-labelled derivative. These SPT inhibitors exhibited dual inhibitory activities against SPT2 and SPT3. We used a fluorescent-labelled probe to molecularly assess the inhibitory mechanism and revealed its binding to the SPT2 or SPT3 subunit in the small subunit (ss) SPTa/SPT1/SPT2/or ssSPTa/SPT1/SPT3 functional complexes. One of the SPT inhibitors exhibited a significantly slow dissociation from the SPT complex. We confirmed that our SPT inhibitors suppressed ceramide content in non-small-cell lung cancer cell line, HCC4006, by performing a target engagement analysis. The potency of ceramide reduction correlated to that observed in a recombinant SPT2 enzyme assay. We thus elucidated and provided a fundamental understanding of the molecular mode of action of SPT inhibitors and developed potent, cell-active SPT inhibitors that can be used to clarify the biological function of SPT.
Assuntos
Inibidores Enzimáticos/síntese química , Serina C-Palmitoiltransferase/antagonistas & inibidores , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Ceramidas/antagonistas & inibidores , Humanos , Neoplasias Pulmonares , Pirazóis/farmacologia , Piridinas/farmacologiaRESUMO
Recently, there have been a limited number of new, validated targets for small-molecule drug discovery in the pharmaceutical industry. Although there are approximately 30â¯000 genes in the human genome, only 2% are targeted by currently approved small-molecule drugs. One reason that many targets remain neglected by drug discovery programs is the absence of biochemical assays enabling evaluation of the potency of inhibitors in a quantitative and high-throughput manner. To overcome this issue, we developed a biochemical assay to evaluate the potency of both reversible and irreversible inhibitors using a nonspecific thiol-labeling fluorescent probe. The assay can be applied to any targets with a cysteine residue in a pocket that can accommodate small-molecule ligands. By constructing a mathematical model, we showed that the potency of compounds can be quantitatively evaluated by performing an activity-based protein profiling assay. In addition, the validity of the theory was confirmed experimentally using epidermal growth factor receptor kinase as a model target. This approach provides an assay system for targets for which biochemical assays cannot be developed. Our approach can potentially not only expand the number of exploitable targets but also accelerate the lead optimization process by providing quantitative structure-activity relationship information.
Assuntos
Compostos de Boro/metabolismo , Descoberta de Drogas/métodos , Receptores ErbB/antagonistas & inibidores , Corantes Fluorescentes/metabolismo , Maleimidas/metabolismo , Modelos Moleculares , Inibidores de Proteínas Quinases/farmacologia , Reagentes de Sulfidrila/metabolismo , Animais , Sítios de Ligação , Ligação Competitiva , Biocatálise , Compostos de Boro/química , Domínio Catalítico , Cisteína/química , Receptores ErbB/química , Receptores ErbB/genética , Receptores ErbB/metabolismo , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Ensaios de Triagem em Larga Escala , Humanos , Cinética , Ligantes , Maleimidas/química , Conformação Molecular , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Relação Quantitativa Estrutura-Atividade , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Células Sf9 , Spodoptera , Reagentes de Sulfidrila/químicaRESUMO
S-adenosylhomocysteine hydrolase (AHCY) catalyzes the reversible hydrolysis of S-adenosylhomocysteine (SAH) to adenosine and l-homocysteine. This enzyme is frequently overexpressed in many tumor types and is considered to be a validated anti-tumor target. In order to enable the development of small molecule AHCY inhibitors as targeted cancer therapeutics we developed an assay based on a RapidFire high-throughput mass spectrometry detection system, which allows the direct measurement of AHCY enzymatic activity. This technique avoids many of the problems associate with the previously reported method of using a thiol-reactive fluorescence probes to measure AHCY activity. Screening of a â¼500,000 compound library using this technique identified multiple SAH competitive hits. Co-crystal structures of the hit compounds complexed with AHCY were obtained showing that the compounds indeed bind in the SAH site of the enzyme. In addition, some hit compounds increased the SAH levels in HCT116 cells and showed growth inhibition. These compounds could be promising starting points for the optimization of cancer treatments.
Assuntos
Adenosil-Homocisteinase/antagonistas & inibidores , Adenosil-Homocisteinase/metabolismo , Antineoplásicos/análise , Inibidores Enzimáticos/análise , Espectrometria de Massas , Antineoplásicos/química , Antineoplásicos/farmacologia , Sítios de Ligação , Sobrevivência Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Células HCT116 , Ensaios de Triagem em Larga Escala , Humanos , Ligação Proteica , Mapas de Interação de ProteínasRESUMO
Most prostate cancers initially respond to androgen deprivation therapy, but then progress from androgen-dependent to androgen-independent prostate cancers. In the present study, a differential cytotoxicity screen of hormone-resistant prostate cancer LNCaP-hr cells and the parental LNCaP-FGC cells against normal MRC5 fibroblast cells, identified a small molecule compound, Aristeromycin (a derivative of 3-deazaneplanocin A (DZNeP)). The molecular target was shown to be S-adenosylhomocysteine hydrolase (AHCY), which catalyzes reversible hydrolysis of S-adenosylhomocysteine (SAH) to adenosine and L-homocysteine. DZNeP and Aristeromycin showed high inhibitory activity against AHCY. Treatment of the prostate cancer cells with DZNeP led to SAH accumulation and decreased levels of homocysteine and histone H3K27 methylation. SAH accumulation and cell growth inhibition were confirmed after siRNA-mediated AHCY knockdown. To further understand why AHCY inhibitors decreased prostate cancer cell growth, we performed microRNA expression profiling with LNCaP-hr cells. Mir-26a, which is involved in regulation of EZH2 expression, was upregulated in Aristeromycin-treated LNCaP-hr cells. A reporter assay established with the EZH2 3'-UTR confirmed that transfection of microRNA precursor molecules for miR-26a decreased the EZH2 3'-UTR luciferase activity. Meanwhile, an antisense microRNA inhibitor for miR-26a recovered the luciferase activity. The present findings suggest, at least in part, that miR-26a induced by an AHCY inhibitor can regulate oncogenic EZH2 expression, and could thus be an important mechanism of action for AHCY inhibitors in the treatment of prostate cancer.
Assuntos
Adenosina/análogos & derivados , MicroRNAs/genética , Neoplasias da Próstata/patologia , Ativação Transcricional/efeitos dos fármacos , Adenosina/farmacologia , Adenosil-Homocisteinase/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Masculino , RNA Interferente Pequeno/genéticaRESUMO
Sphingomyelin synthase (SMS) is a membrane enzyme that catalyzes the synthesis of sphingomyelin, is required for the maintenance of plasma membrane microdomain fluidity, and has two isoforms: SMS1 and SMS2. Although these isoforms exhibit the same SMS activity, they are different enzymes with distinguishable subcellular localizations. It was reported that SMS2 KO mice displayed lower inflammatory responses and anti-atherosclerotic effects, suggesting that inhibition of SMS2 would be a potential therapeutic approach for controlling inflammatory responses and atherosclerosis. This study aimed to discover a novel small-molecule compound that selectively inhibits SMS2 enzymatic activity. We developed a human SMS2 enzyme assay with a high-throughput mass spectrometry-based screening system. We characterized the enzymatic properties of SMS2 and established a high-throughput screening-compatible assay condition. To identify human SMS2 inhibitors, we conducted compound screening using the enzyme assay. We identified a 2-quinolone derivative as a SMS2 selective inhibitor with an IC50 of 950 nM and >100-fold selectivity for SMS2 over SMS1. The 2-quinolone exhibited efficacy in a cell-based engagement assay. We demonstrated that a more potent derivative directly bound to SMS2-expressing membrane fractions in an affinity selection mass spectrometry assay. Mutational analyses revealed that the interaction of the inhibitor with SMS2 required the presence of the amino acids S227 and H229, which are located in the catalytic domain of SMS2. In conclusion, we discovered novel SMS2-selective inhibitors. 2-Quinolone SMS2 inhibitors are considered applicable for leading optimization studies. Further investigations using these SMS2 inhibitors would provide validation tools for SMS2-relevant pathways in vitro and in vivo.
Assuntos
Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas do Tecido Nervoso/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Transferases (Outros Grupos de Fosfato Substituídos)/antagonistas & inibidores , Animais , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Espectrometria de Massas , Proteínas de Membrana/deficiência , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Estrutura Molecular , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/metabolismo , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Transferases (Outros Grupos de Fosfato Substituídos)/deficiência , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismoRESUMO
Delta-5 desaturase (D5D) catalyzes the conversion from dihomo-gamma linoleic acid (DGLA) to arachidonic acid (AA). DGLA and AA are common precursors of anti- and pro-inflammatory eicosanoids, respectively, making D5D an attractive drug target for inflammatory-related diseases. Despite several reports on D5D inhibitors, their biochemical mechanisms of action (MOAs) remain poorly understood, primarily due to the difficulty in performing quantitative enzymatic analysis. Herein, we report a radioligand binding assay to overcome this challenge and characterized T-3364366, a thienopyrimidinone D5D inhibitor, by use of the assay. T-3364366 is a reversible, slow-binding inhibitor with a dissociation half-life in excess of 2.0 h. The long residence time was confirmed in cellular washout assays. Domain swapping experiments between D5D and D6D support [(3)H]T-3364366 binding to the desaturase domain of D5D. The present study is the first to demonstrate biochemical MOA of desaturase inhibitors, providing important insight into drug discovery of desaturase enzymes.