Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomed Chromatogr ; 38(5): e5834, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38308389

RESUMO

Parkinson's disease (PD) is inseparable from metabolic disorders but lacks assessment of specific metabolite alteration. To explore the sequential metabolic changes in PD progression, we evenly divided 78 C57BL/6 mice (10 weeks) into six groups (one control group and five experimental groups) and collected the hippocampus tissue of mice after treating with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, and probenecid (twice a week) at five periods (1, 2, 3, 4, and 5 weeks) for metabolome analysis. Our study identified 567 differentially abundant metabolites (DAMs) (total 4348 metabolites). Compared with controls, 145, 146, 171, 208, and 213 DAMs were obtained from the five experimental groups, respectively. Notably, 40 shared DAMs were present in five experimental groups, of which 22 shared DAMs formed a new metabolic network based on amino acid metabolism. Compared with group W3, 84 DAMs were identified in group W5, including 12 unique DAMs. DAMs in different stages of PD were significantly enriched in amino acid metabolism pathway, lipid metabolism pathway, and ferroptosis pathway. l-Glutamine, spermidine, and l-tryptophan were the key hubs in the whole metabolic process of PD. N-Formyl-l-methionine gradually increased in abundance with PD progression, whereas 5-methylcytosine gradually decreased. The study emphasized the sequential changes in DAMs in PD progression, stimulating subsequent studies.


Assuntos
Aminoácidos , Ferroptose , Metabolômica , Camundongos Endogâmicos C57BL , Doença de Parkinson , Animais , Metabolômica/métodos , Camundongos , Doença de Parkinson/metabolismo , Aminoácidos/metabolismo , Aminoácidos/análise , Masculino , Metaboloma/fisiologia , Hipocampo/metabolismo , Modelos Animais de Doenças
2.
Heliyon ; 10(10): e30903, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38778995

RESUMO

Rheumatoid arthritis (RA) is a persistent autoimmune condition with no identified cure currently. Recently, scientists have applied metabolomics to investigate altered metabolic profiles and unique diseases-associated metabolic signatures. Herein, we applied metabolomics approach to analyze serum samples of 41 RA patients and 42 healthy controls (HC) with the aim to characterize RA patients' metabolic profile, investigate related underlying pathological processes, and identify target metabolites. By utilizing ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry, we found 168 proposed metabolites and 45 vital metabolic pathways. Our analysis revealed that deoxyinosine (DI), a metabolite of the purine metabolic pathway, was the most significant reduced metabolite in RA patients. Furthermore, through targeted detection, we confirmed lower concentration of DI in RA patients' peripheral blood. Moreover, DI inhibited lipopolysaccharide-induced inflammation both in vitro and in vivo. We further assessed DI's therapeutic potential in a collagen-induced arthritis (CIA) murine model. The results revealed that DI attenuated CIA, as evidenced by significantly lowered clinical scores of arthritis, alleviated joint swelling, and mitigated bone destruction. Moreover, we elucidated the underlying mechanism by which DI increased the population of myeloid-derived suppressor cells (MDSCs) and suppressed the proliferation of induced T cells. Collectively, these findings suggested that DI potentially ameliorated RA by inducing immunosuppressive MDSCs. The study provides key observations on RA pathogenesis and may contribute to developing novel therapeutic strategies for this debilitating condition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA