RESUMO
Fingerprints are of long-standing practical and cultural interest, but little is known about the mechanisms that underlie their variation. Using genome-wide scans in Han Chinese cohorts, we identified 18 loci associated with fingerprint type across the digits, including a genetic basis for the long-recognized "pattern-block" correlations among the middle three digits. In particular, we identified a variant near EVI1 that alters regulatory activity and established a role for EVI1 in dermatoglyph patterning in mice. Dynamic EVI1 expression during human development supports its role in shaping the limbs and digits, rather than influencing skin patterning directly. Trans-ethnic meta-analysis identified 43 fingerprint-associated loci, with nearby genes being strongly enriched for general limb development pathways. We also found that fingerprint patterns were genetically correlated with hand proportions. Taken together, these findings support the key role of limb development genes in influencing the outcome of fingerprint patterning.
Assuntos
Dermatoglifia , Dedos/crescimento & desenvolvimento , Organogênese/genética , Polimorfismo de Nucleotídeo Único , Dedos do Pé/crescimento & desenvolvimento , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Povo Asiático/genética , Padronização Corporal/genética , Criança , Estudos de Coortes , Feminino , Membro Anterior/crescimento & desenvolvimento , Loci Gênicos , Estudo de Associação Genômica Ampla , Humanos , Proteína do Locus do Complexo MDS1 e EVI1/genética , Masculino , Camundongos , Pessoa de Meia-Idade , Adulto JovemRESUMO
OBJECTIVES: The Tibetan-Yi Corridor located on the eastern edge of Tibetan Plateau is suggested to be the key region for the origin and diversification of Tibeto-Burman speaking populations and the main route of the peopling of the Plateau. However, the genetic history of the populations in the Corridor is far from clear due to limited sampling in the northern part of the Corridor. MATERIALS AND METHODS: We collected blood samples from 10 Tibetan and 10 Han Chinese individuals from Gansu province and genotyped about 600,000 genome-wide single nucleotide polymorphisms (SNPs). RESULTS: Our data revealed that the populations in the Corridor are all admixed on a genetic cline of deriving ancestry from Tibetans on the Plateau and surrounding lowland East Asians. The Tibetan and Han Chinese groups in the north of the Plateau show significant evidence of low-level West Eurasian admixture that could be probably traced back to 600â¼900 years ago. DISCUSSION: We conclude that there have been huge population migrations from surrounding lowland onto the Tibetan Plateau via the Tibetan-Yi Corridor since the initial formation of Tibetans probably in Neolithic Time, which leads to the current genetic structure of Tibeto-Burman speaking populations.
Assuntos
Povo Asiático/genética , Fluxo Gênico/genética , Deriva Genética , Antropologia Física , Feminino , Genética Populacional , Migração Humana , Humanos , Masculino , Polimorfismo de Nucleotídeo Único/genética , TibetRESUMO
BACKGROUND & AIMS: The mechanisms by which Epstein-Barr virus (EBV) contributes to the development of gastric cancer are unclear. We investigated EBV-associated genomic and epigenomic variations in gastric cancer cells and tumors. METHODS: We performed whole-genome, transcriptome, and epigenome sequence analyses of a gastric adenocarcinoma cell line (AGS cells), before and after EBV infection. We then looked for alterations in gastric tumor samples, with (n = 34) or without (n = 100) EBV infection, collected from patients at the Prince of Wales Hospital, Chinese University of Hong Kong (from 1998 through 2004), or the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (from 1999 through 2006). RESULTS: Transcriptome analysis showed that infected cells expressed 9 EBV genes previously detected in EBV-associated gastric tumors and 71 EBV genes not previously reported in gastric tumors. Ten viral genes that had not been reported previously in gastric cancer but were expressed most highly in EBV-infected cells also were expressed in primary EBV-positive gastric tumors. Whole-genome sequence analysis identified 45 EBV-associated nonsynonymous mutations. These mutations, in genes such as AKT2, CCNA1, MAP3K4, and TGFBR1, were associated significantly with EBV-positive gastric tumors, compared with EBV-negative tumors. An activating mutation in AKT2 was associated with reduced survival times of patients with EBV-positive gastric cancer (P = .006); this mutation was found to dysregulate mitogen-activated protein kinase signaling. Integrated epigenome and transcriptome analyses identified 216 genes transcriptionally down-regulated by EBV-associated hypermethylation; methylation of ACSS1, FAM3B, IHH, and TRABD increased significantly in EBV-positive tumors. Overexpression of Indian hedgehog (IHH) and TraB domain containing (TRABD) increased proliferation and colony formation of gastric cancer cells, whereas knockdown of these genes reduced these activities. We found 5 signaling pathways (axon guidance, focal adhesion formation, interactions among cytokines and receptors, mitogen-activated protein kinase signaling, and actin cytoskeleton regulation) to be affected commonly by EBV-associated genomic and epigenomic alterations. CONCLUSIONS: By using genomic, transcriptome, and epigenomic comparisons of EBV infected vs noninfected gastric cancer cells and tumor samples, we identified alterations in genes, gene expression, and methylation that affect different signaling networks. These might be involved in EBV-associated gastric carcinogenesis.
Assuntos
Adenocarcinoma/genética , Infecções por Vírus Epstein-Barr/genética , Estudo de Associação Genômica Ampla , Herpesvirus Humano 4/genética , Neoplasias Gástricas/genética , Transcriptoma , Adenocarcinoma/virologia , Linhagem Celular Tumoral , Ciclina A1/genética , Metilação de DNA/genética , Epigênese Genética/genética , Infecções por Vírus Epstein-Barr/virologia , Regulação Neoplásica da Expressão Gênica , Regulação Viral da Expressão Gênica , Genes Virais , Humanos , MAP Quinase Quinase Quinase 4/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/genética , Neoplasias Gástricas/virologiaRESUMO
Background: Serum uric acid (SUA) levels have been associated with an increased risk and recurrence of venous thromboembolism (VTE) in European populations, but the potential causal relationship remains unclear. Large-scale studies on the association between SUA and VTE in East Asian populations are lacking, despite the high prevalence of hyperuricemia in this region. To address this, we conducted a cohort analysis and a two-sample Mendelian randomization (MR) study in East Asian populations. Methods: We collected data on VTE patients from the China Pulmonary Thromboembolism Registry Study (CURES) and compared them to controls obtained from the China Health and Retirement Longitudinal Survey (CHARLS). Propensity score matching (PSM) and cubic-spline models were applied to assess the effect of SUA on VTE risk while adjusting for multiple covariates. We also performed two-sample MR analyses to infer potential causality based on summary statistics from Genome-wide Association Studies (GWAS) of SUA and VTE in the East Asian population. Findings: We found that the SUA levels were higher in VTE patients (317.95 mmol/L) compared to the general population (295.75 mmol/L), and SUA ≥ 325 mmol/L was associated with an increased risk of VTE recurrence (P-value = 0.0001). The univariable MR suggested a causal relationship between elevated SUA and higher VTE risk (Pinverse variance weighted < 0.05), and multivariable MR showed that elevated SUA levels continued to promote the development of VTE after adjusting for multiple covariates (Pmultivariable residual < 0.05). Sensitivity analyses produced similar results for these estimations. Interpretation: Our study provides evidence supporting a robust positive association between SUA and VTE in the East Asian population, and MR analyses suggest that this association is likely to be causal. Our findings underscore the importance of monitoring SUA levels in VTE prevention and call for urgent action to address the growing burden of hyperuricemia in the Asia-Pacific region. Funding: This research was funded by Beijing Nova Program (No. Z211100002121057), National Natural Science Foundation of China (No. 82100065 and No. 62350004), CAMS Innovation Fund for Medical Sciences (No. 2021-I2M-1-061 and No. 2021-1-I2M-001), Elite Medical Professionals project of China-Japan Friendship Hospital (No. ZRJY2021-QM12), National Key Research and Development Project (No. 2021YFF1201200 and No. 2022YFC3341004).
RESUMO
Y-chromosome Haplogroup O2a1c-002611 is one of the dominant lineages of East Asians and Southeast Asians. However, its internal phylogeny remains insufficiently investigated. In this study, we genotyped 89 new highly informative single nucleotide polymorphisms (SNPs) in 305 individuals with Haplogroup O2a1c-002611 identified from 2139 Han Chinese males. Two major branches were identified, O2a1c1-F18 and O2a1c2-L133.2 and the first was further divided into two main subclades, O2a1c1a-F11 and O2a1c1b-F449, accounting for 11.13% and 2.20% of Han Chinese, respectively. In Haplogroup O2a1c1a-F11, we also determined seven sublineages with quite different frequency distributions in Han Chinese ranging from 0.187% to 3.553%, implying they might have different demographic history. The reconstructed haplogroup tree for all the major clades within Haplogroup O2a1c-002611 permits better resolution of male lineages in population studies of East Asia and Southeast Asia. The dataset generated in the present study are also valuable for forensic identification and paternity tests in China.
Assuntos
Povo Asiático/classificação , Povo Asiático/genética , Cromossomos Humanos Y , Haplótipos , Filogenia , China , Humanos , Polimorfismo de Nucleotídeo ÚnicoRESUMO
MicroRNAs (miRNAs) are aberrantly expressed in virtually all cancer types, including digestive cancers. Herein, we aggregated and systematically analyzed miRNA expression profiles of 1765 tumor samples, including esophageal, gastric, liver, pancreatic, colon and rectal cancers, obtained through small RNA sequencing by The Cancer Genome Atlas. We found that digestive cancers of different tissue origins could be differentiated according to their miRNA expression profiles. In particular, esophageal squamous cell carcinoma and esophageal adenocarcinoma exhibited distinct miRNA expression patterns. Thirteen (e.g. miR-135b, miR-182) and sixteen (e.g. miR-139, miR-133a-1, miR-490) miRNAs were commonly upregulated and downregulated in more than four cancer types, respectively. Pertinent to pathological features, low miR-181d expression was associated with microsatellite instability in colon and gastric cancers whereas low miR-106a expression was associated with hepatitis B virus infection in hepatocellular carcinoma. Progression in colon cancer could also be predicted by low let-7f-2 and high miR-106a expression. Molecular subtypes with distinct prognostic outcomes independent of tumor-node-metastasis staging were identified in hepatocellular carcinoma and colon cancer. In total, 4 novel and 6 reported associations between specific miRNAs and patients' survival were identified. Collectively, novel miRNA markers were identified to stratify digestive cancers with different pathological features and survival outcomes.
Assuntos
Neoplasias do Sistema Digestório/genética , Neoplasias do Sistema Digestório/mortalidade , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Biomarcadores Tumorais , Análise por Conglomerados , Neoplasias do Sistema Digestório/diagnóstico , Progressão da Doença , Perfilação da Expressão Gênica , Hepatite B/complicações , Hepatite B/virologia , Vírus da Hepatite B , Humanos , Instabilidade de Microssatélites , Mutação , Estadiamento de Neoplasias , Prognóstico , Análise de SobrevidaRESUMO
Bacterial infection is linked to colorectal carcinogenesis, but the species that contribute to a protumorigenic ecology are ill-defined. Here we report evidence that α-hemolysin-positive (hly(+)) type I Escherichia coli (E. coli) drives adenomagenesis and colorectal cancer in human females but not males. We classified E. coli into four types using a novel typing method to monitor fimH mutation patterns of fecal isolates from adenoma patients (n= 59), colorectal cancer patients (n= 83), and healthy subjects (n= 85). hly(+) type I E. coli was found to be relatively more prevalent in stools from females with adenoma and colorectal cancer, correlating with poor survival in colorectal cancer patients. In mechanistic studies in female mice, we found that hly(+) type 1 E. coli activated expression of the glucose transporter GLUT1 and repressed expression of the tumor suppressor BIM. hly-encoded alpha hemolysin partially accounted for these effects by elevating the levels of HIF1α. Notably, colon tumorigenesis in mice could be promoted by feeding hly(+) type I E. coli to female but not male subjects. Collectively, our findings point to hemolytic type I E. coli as a candidate causative factor of colorectal cancer in human females, with additional potential as a biomarker of disease susceptibility. Cancer Res; 76(10); 2891-900. ©2016 AACR.
Assuntos
Adenoma/patologia , Neoplasias do Colo/patologia , Infecções por Escherichia coli/patologia , Proteínas Hemolisinas/metabolismo , Adenoma/metabolismo , Adenoma/microbiologia , Animais , Apoptose , Proteína 11 Semelhante a Bcl-2/genética , Proteína 11 Semelhante a Bcl-2/metabolismo , Western Blotting , Proliferação de Células , Neoplasias do Colo/metabolismo , Neoplasias do Colo/microbiologia , Escherichia coli , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Fezes/microbiologia , Feminino , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Proteínas Hemolisinas/genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estadiamento de Neoplasias , Prognóstico , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Gastric cancer is not a single disease, and its subtype classification is still evolving. Next-generation sequencing studies have identified novel genetic drivers of gastric cancer, but their use as molecular classifiers or prognostic markers of disease outcome has yet to be established. In this study, we integrated somatic mutational profiles and clinicopathologic information from 544 gastric cancer patients from previous genomic studies to identify significantly mutated genes (SMG) with prognostic relevance. Gastric cancer patients were classified into regular (86.8%) and hypermutated (13.2%) subtypes based on mutation burden. Notably, TpCpW mutations occurred significantly more frequently in regular, but not hypermutated, gastric cancers, where they were associated with APOBEC expression. In the former group, six previously unreported (XIRP2, NBEA, COL14A1, CNBD1, ITGAV, and AKAP6) and 12 recurrent mutated genes exhibited high mutation prevalence (≥3.0%) and an unexpectedly higher incidence of nonsynonymous mutations. We also identified two molecular subtypes of regular-mutated gastric cancer that were associated with distinct prognostic outcomes, independently of disease staging, as confirmed in a distinct patient cohort by targeted capture sequencing. Finally, in diffuse-type gastric cancer, CDH1 mutation was found to be associated with shortened patient survival, independently of disease staging. Overall, our work identified previously unreported SMGs and a mutation signature predictive of patient survival in newly classified subtypes of gastric cancer, offering opportunities to stratify patients into optimal treatment plans based on molecular subtyping. Cancer Res; 76(7); 1724-32. ©2016 AACR.
Assuntos
Neoplasias Gástricas/genética , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Mutação , Prognóstico , Neoplasias Gástricas/mortalidadeRESUMO
AIM: Esophageal squamous cell carcinoma (ESCC) is one of the most common fatal malignances of the digestive tract. Its prognosis is poor mainly due to the lack of reliable markers for early detection and prognostic prediction. Here we aim to identify the molecules involved in ESCC carcinogenesis and those as potential markers for prognosis and as new molecular therapeutic targets. METHODS: We performed genome-wide gene expression profile analyses of 10 primary ESCCs and their adjacent normal tissues by cDNA microarrays representing 47,000 transcripts and variants. Candidate genes were then validated by semi quantitative reverse transcription-PCR (RT-PCR), tissue microarrays (TMAs) and immunohistochemistry (IHC) staining. RESULTS: Using an arbitrary cutoff line of signal log ratio of ≥1.5 or ≤-1.5, we observed 549 up-regulated genes and 766 down-regulated genes in ESCCs compared with normal esophageal tissues. The functions of 302 differentially expressed genes were associated with cell metabolism, cell adhesion and immune response. Several candidate deregulated genes including four overexpressed (CTTN, DMRT2, MCM10 and SCYA26) and two underexpressed (HMGCS2 and SORBS2) were subsequently verified, which can be served as biomarkers for ESCC. Moreover, overexpression of cortactin (CTTN) was observed in 126/198 (63.6%) of ESCC cases and was significantly associated with lymph node metastasis (Pâ=â0.000), pathologic stage (Pâ=â0.000) and poor survival (P<0.001) of ESCC patients. Furthermore, a significant correlation between CTTN overexpression and shorter disease-specific survival rate was found in different subgroups of ESCC patient stratified by the pathologic stage (P<0.05). CONCLUSION: Our data provide valuable information for establishing molecules as candidates for prognostic and/or as therapeutic targets.
Assuntos
Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/genética , Cortactina/genética , Neoplasias Esofágicas/genética , Perfilação da Expressão Gênica , Genoma Humano/genética , Idoso , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Cortactina/metabolismo , Epitélio/metabolismo , Epitélio/patologia , Carcinoma de Células Escamosas do Esôfago , Esôfago/metabolismo , Esôfago/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Prognóstico , Modelos de Riscos Proporcionais , Análise de Regressão , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
The utility of genome editing technologies for disease modeling and developing cellular therapies has been extensively documented, but the impact of these technologies on mutational load at the whole-genome level remains unclear. We performed whole-genome sequencing to evaluate the mutational load at single-base resolution in individual gene-corrected human induced pluripotent stem cell (hiPSC) clones in three different disease models. In single-cell clones, gene correction by helper-dependent adenoviral vector (HDAdV) or Transcription Activator-Like Effector Nuclease (TALEN) exhibited few off-target effects and a low level of sequence variation, comparable to that accumulated in routine hiPSC culture. The sequence variants were randomly distributed and unique to individual clones. We also combined both technologies and developed a TALEN-HDAdV hybrid vector, which significantly increased gene-correction efficiency in hiPSCs. Therefore, with careful monitoring via whole-genome sequencing it is possible to apply genome editing to human pluripotent cells with minimal impact on genomic mutational load.
Assuntos
Adenoviridae/genética , Endonucleases/metabolismo , Terapia Genética , Vetores Genéticos/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Sistemas CRISPR-Cas/genética , Células Clonais , Reparo do DNA/genética , Endonucleases/genética , Vetores Genéticos/genética , Genoma/genética , Células HEK293 , Humanos , Mutação/genética , Medicina Regenerativa , Análise de Sequência de DNARESUMO
Single-cell sequencing is a powerful tool for delineating clonal relationship and identifying key driver genes for personalized cancer management. Here we performed single-cell sequencing analysis of a case of colon cancer. Population genetics analyses identified two independent clones in tumor cell population. The major tumor clone harbored APC and TP53 mutations as early oncogenic events, whereas the minor clone contained preponderant CDC27 and PABPC1 mutations. The absence of APC and TP53 mutations in the minor clone supports that these two clones were derived from two cellular origins. Examination of somatic mutation allele frequency spectra of additional 21 whole-tissue exome-sequenced cases revealed the heterogeneity of clonal origins in colon cancer. Next, we identified a mutated gene SLC12A5 that showed a high frequency of mutation at the single-cell level but exhibited low prevalence at the population level. Functional characterization of mutant SLC12A5 revealed its potential oncogenic effect in colon cancer. Our study provides the first exome-wide evidence at single-cell level supporting that colon cancer could be of a biclonal origin, and suggests that low-prevalence mutations in a cohort may also play important protumorigenic roles at the individual level.