Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Physiol Plant ; 176(4): e14415, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962818

RESUMO

The monotonicity of color type in naturally colored cottons (NCCs) has become the main limiting factor to their widespread use, simultaneously coexisting with poor fiber quality. The synchronous improvement of fiber quality and color become more urgent and crucial as the demand for sustainable development increases. The homologous gene of wild cotton Gossypium stocksii LAC15 in G. hirsutum, GhLAC15, was also dominantly expressed in the developing fibers of brown cotton XC20 from 5 DPA (day post anthesis) to 25 DPA, especially at the secondary cell wall thickening stage (20 DPA and 25 DPA). In XC20 plants with downregulated GhLAC15 (GhLAC15i), a remarkable reduction in proanthocyanidins (PAs) and lignin contents was observed. Some of the key genes in the phenylpropane and flavonoid biosynthesis pathway were down-regulated in GhLAC15i plants. Notably, the fiber length of GhLAC15i plants showed an obvious increase and the fiber color was lightened. Moreover, we found that the thickness of cotton fiber cell wall was decreased in GhLAC15i plants and the fiber surface became smoother compared to that of WT. Taken together, this study revealed that GhLAC15 played an important role in PAs and lignin biosynthesis in naturally colored cotton fibers. It might mediate fiber color and fiber quality by catalyzing PAs oxidation and lignin polymerization, ultimately regulating fiber colouration and development.


Assuntos
Fibra de Algodão , Regulação da Expressão Gênica de Plantas , Gossypium , Lacase , Lignina , Proteínas de Plantas , Gossypium/genética , Gossypium/metabolismo , Gossypium/enzimologia , Lacase/metabolismo , Lacase/genética , Lignina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Parede Celular/metabolismo , Proantocianidinas/metabolismo , Cor , Pigmentação/genética
2.
Mol Biol Rep ; 50(6): 4865-4873, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37052804

RESUMO

BACKGROUND: The naturally colored brown cotton fiber is the most widely used environmentally friendly textile material, which primarily contains proanthocyanidins and their derivatives. Many structural genes in the flavonoid synthesis pathway are known to improve the genetic resources of naturally colored cotton. Among them, DFR is a crucial late enzyme to synthesis both anthocyanins and proanthocyanidins in the plant flavonoid pathway. METHODS: The protein sequences of GhDFRs were analyzed using bioinformatic tools. The expression levels of GhDFRs in various tissues and organs of upland cotton Zongxu1 (ZX1), were analyzed by quantitative real-time PCR, and the expression pattern of GhDFR1 during fiber development of white cotton and brown cotton was analyzed further. The function of GhDFR1 in NCC ZX1 was preliminarily analyzed by virus induced gene silencing (VIGS) technology. RESULTS: Bioinformatic analysis revealed that GhDFRs sequences in upland cotton genome were extremely conserved. Furthermore, evolutionary tree analysis revealed that the functions of GhDFR1 and GhDFR2, and GhDFR3 and GhDFR4, presented different and shared some similarities. Our study showed GhDFR1 and GhDFR2 were specifically expressed in fibers, while GhDFR3 and GhDFR4 were specifically expressed in petals. GhDFR1 was exclusively expressed in brown cotton fiber at various stages of development and progressively increased with the growth of fiber, but the trend of expression in white cotton was quite the opposite. We silenced GhDFR1 expression in brown cotton fiber using VIGS technology, and observed the VIGS-interference plants. After reducing the expression level of GhDFR1, the period for significant GhDFR1 expression in the developing fibers changed, reducing the content of anthocyanins, and lightening the color of mature cotton fibers. CONCLUSION: GhDFR1 was preferentially expressed in brown cotton during fiber development. The timing of GhDFR1 expression for flavonoid synthesis altered, resulting in anthocyanin contents reduced and the fiber color of the GhDFR1i lines lightened. These findings showed the role of GhDFR1 in fiber coloration of NCC and provided a new candidate for NCC genetic improvement.


Assuntos
Flavonoides , Proantocianidinas , Flavonoides/genética , Antocianinas/metabolismo , Proantocianidinas/metabolismo , Proteínas de Plantas/metabolismo , Fibra de Algodão , Clonagem Molecular , Gossypium/genética , Gossypium/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Perfilação da Expressão Gênica/métodos
3.
J Plant Physiol ; 258-259: 153360, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33482420

RESUMO

Drought is one of the abiotic stresses which affects the growth and development of plants, including cotton. The role of stomatal anion channel SLAC1 has been well established in regulating stomatal closure in response to drought stress in several plant species. However, the gene encoding for the main S-type anion channel SLAC1 in cotton has not been identified hence its role in drought stress response remains uncharacterized. In this study, we identified Gh_A08G1582 as the gene encoding for GhSLAC1 in cotton. The gene exhibited abundant expression in leaves and was localized in cell membrane. Furthermore, the expression of GhSLAC1 in Arabidopsis slac1-3 mutants rescued the defective stomatal movement phenotypes of the mutants, pointing to its role in stomata regulation. GhSLAC1 channel was activated by AtOST1 in Xenopus laevis oocytes and showed greater permeability for nitrate than chloride. Further data demonstrated that transgenic cotton lines with silenced GhSLAC1 exhibited obvious leaf wilting phenotype and strong stomatal closure insensitivity under drought stress. Taken together, these results demonstrate that GhSLAC1 is an essential element for stomatal closure in response to drought in cotton.


Assuntos
Secas , Gossypium/fisiologia , Proteínas de Membrana/genética , Proteínas de Plantas/genética , Estômatos de Plantas/fisiologia , Sequência de Aminoácidos , Gossypium/genética , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alinhamento de Sequência
4.
PLoS One ; 16(2): e0246801, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33561168

RESUMO

Chilling stress generates significant inhibition of normal growth and development of cotton plants and lead to severe reduction of fiber quality and yield. Currently, little is known for the molecular mechanism of brown-fiber cotton (BFC) to respond to chilling stress. Herein, RNA-sequencing (RNA-seq)-based comparative analysis of leaves under 4°C treatment in two different-tolerant BFC cultivars, chilling-sensitive (CS) XC20 and chilling-tolerant (CT) Z1612, was performed to investigate the response mechanism. A total of 72650 unigenes were identified with eight commonly used databases. Venn diagram analysis identified 1194 differentially expressed genes (DEGs) with significant up-regulation in all comparison groups. Furthermore, enrichment analyses of COG and KEGG, as well as qRT-PCR validation, indicated that 279 genes were discovered as up-regulated DEGs (UDEGs) with constant significant increased expression in CT cultivar Z1612 groups at the dimensions of both each comparison group and treatment time, locating in the enriched pathways of signal transduction, protein and carbohydrate metabolism, and cell component. Moreover, the comprehensive analyses of gene expression, physiological index and intracellular metabolite detections, and ascorbate antioxidative metabolism measurement validated the functional contributions of these identified candidate genes and pathways to chilling stress. Together, this study for the first time report the candidate key genes and metabolic pathways responding to chilling stress in BFC, and provide the effective reference for understanding the regulatory mechanism of low temperature adaptation in cotton.


Assuntos
Resposta ao Choque Frio/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Gossypium/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/biossíntese , Transcriptoma/fisiologia , Gossypium/genética , Folhas de Planta/genética , Proteínas de Plantas/genética
5.
PeerJ ; 6: e4537, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29682406

RESUMO

The existence of only natural brown and green cotton fibers (BCF and GCF, respectively), as well as poor fiber quality, limits the use of naturally colored cotton (Gossypium hirsutum L.). A better understanding of fiber pigment regulation is needed to surmount these obstacles. In this work, transcriptome analysis and quantitative reverse transcription PCR revealed that 13 and 9 phenylpropanoid (metabolic) pathway genes were enriched during pigment synthesis, while the differential expression of phenylpropanoid (metabolic) and flavonoid metabolic pathway genes occurred among BCF, GCF, and white cotton fibers (WCF). Silencing the chalcone flavanone isomerase gene in a BCF line resulted in three fiber phenotypes among offspring of the RNAi lines: BCF, almost WCF, and GCF. The lines with almost WCF suppressed chalcone flavanone isomerase, while the lines with GCF highly expressed the glucosyl transferase (3GT) gene. Overexpression of the Gh3GT or Arabidopsis thaliana 3GT gene in BCF lines resulted in GCF. Additionally, the phenylpropanoid and flavonoid metabolites of BCF and GCF were significantly higher than those of WCF as assessed by a metabolomics analysis. Thus, the flavonoid biosynthetic pathway controls both brown and green pigmentation processes. Like natural colored fibers, the transgenic colored fibers were weaker and shorter than WCF. This study shows the potential of flavonoid pathway modifications to alter cotton fibers' color and quality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA