Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Rep Prog Phys ; 87(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38518359

RESUMO

Charge density wave (CDW is one of the most ubiquitous electronic orders in quantum materials. While the essential ingredients of CDW order have been extensively studied, a comprehensive microscopic understanding is yet to be reached. Recent research efforts on the CDW phenomena in two-dimensional (2D) materials provide a new pathway toward a deeper understanding of its complexity. This review provides an overview of the CDW orders in 2D with atomically thin transition metal dichalcogenides (TMDCs) as the materials platform. We mainly focus on the electronic structure investigations on the epitaxially grown TMDC samples with angle-resolved photoemission spectroscopy and scanning tunneling microscopy/spectroscopy as complementary experimental tools. We discuss the possible origins of the 2D CDW, novel quantum states coexisting with them, and exotic types of charge orders that can only be realized in the 2D limit.

2.
Nature ; 564(7736): 390-394, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30532002

RESUMO

The electric-field-induced quantum phase transition from topological to conventional insulator has been proposed as the basis of a topological field effect transistor1-4. In this scheme, 'on' is the ballistic flow of charge and spin along dissipationless edges of a two-dimensional quantum spin Hall insulator5-9, and 'off' is produced by applying an electric field that converts the exotic insulator to a conventional insulator with no conductive channels. Such a topological transistor is promising for low-energy logic circuits4, which would necessitate electric-field-switched materials with conventional and topological bandgaps much greater than the thermal energy at room temperature, substantially greater than proposed so far6-8. Topological Dirac semimetals are promising systems in which to look for topological field-effect switching, as they lie at the boundary between conventional and topological phases3,10-16. Here we use scanning tunnelling microscopy and spectroscopy and angle-resolved photoelectron spectroscopy to show that mono- and bilayer films of the topological Dirac semimetal3,17 Na3Bi are two-dimensional topological insulators with bulk bandgaps greater than 300 millielectronvolts owing to quantum confinement in the absence of electric field. On application of electric field by doping with potassium or by close approach of the scanning tunnelling microscope tip, the Stark effect completely closes the bandgap and re-opens it as a conventional gap of 90 millielectronvolts. The large bandgaps in both the conventional and quantum spin Hall phases, much greater than the thermal energy at room temperature (25 millielectronvolts), suggest that ultrathin Na3Bi is suitable for room-temperature topological transistor operation.

3.
Environ Res ; 239(Pt 2): 117393, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37838204

RESUMO

Efficient and clean extraction lithium (Li) from spent LiFePO4 batteries (LIBs) still remains a challenge. In this paper, a green deep eutectic solvent (DES) based on ethylene glycol (EG) and choline chloride (CC), combined with ozone (O3) from air source, realized highly selective leaching Li from LiFePO4 in situ for the first time. The influence of experimental parameters on Li and Fe leaching efficiencies (ηLi, ηFe) were studied by orthogonal and single-factor tests, and ηLi ≥ 92.2% while ηFe ≤ 1.6% were obtained under the optimal conditions (6 h, 20 g/L, 8EG:1CC, 40 °C). The impurity Fe in the filtrate was completely precipitated as amorphous FePO4·3H2O after heating (150 °C, 0.5 h), achieving a pure Li-solution. The leaching mechanism elucidated that the synergistic effect (acidification, replacement and oxidation reaction) between the DES and O3 determined the phase transition of Li and Fe, promoting the efficient selective extraction of Li and in-situ separation of Fe (FePO4). The average ηLi and ηFe were separately 85.4% and 2.0% after ten cycles of the 8EG:1CC, indicative of its' excellent reusability. Meanwhile, LiCl was recovered from the filtrate. This process avoided the use of strong acid/alkali and discharge of waste water, providing fresh perspectives on the green recovery of spent LiFePO4 batteries.


Assuntos
Lítio , Ozônio , Reciclagem/métodos , Fontes de Energia Elétrica , Solventes
4.
Environ Res ; 233: 116337, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37301494

RESUMO

This study used a novel green bifunctional deep eutectic solvent (DES) containing ethylene glycol (EG) and tartaric acid (TA) for the efficient and selective recovery of cathode active materials (LiCoO2 and Li3.2Ni2.4Co1.0Mn1.4O8.3) used in lithium-ion batteries through one-step in-situ separation of Li and Co/Ni/Mn. The effects of leaching parameters on the recovery of Li and Co (ηLi and ηCo) from LiCoO2 are discussed, and the optimal reaction conditions are verified, for the first time, using a response surface method. The results demonstrate that under optimal conditions (120 °C, 12 h, EG to TA mole ratio (MEG:TA) of 5:1, and solid to liquid ratio (RS/L) of 20 g/L), the ηLi from LiCoO2 reached 98.34%, and Co was formed as a purple precipitate of cobalt tartrate (CoC4H4O6), which was transformed into a black powder of Co3O4 after calcination. Notably, the ηLi for DES 5 EG:1 TA was maintained at 80% after five cycles, indicating good cyclic stability. When the as-prepared DES was used to leach the spent active material Li3.2Ni2.4Co1.0Mn1.4O8.3, the in-situ selective separation of Li (ηLi = 98.86%) from other valuable elements such as Ni, Mn, and Co, was achieved, indicating the good selective leaching capacity and practical application potential of the DES.


Assuntos
Solventes Eutéticos Profundos , Lítio , Reciclagem , Metais , Cobalto , Fontes de Energia Elétrica
5.
Proc Natl Acad Sci U S A ; 117(27): 15409-15413, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32571928

RESUMO

The resistance of a conventional insulator diverges as temperature approaches zero. The peculiar low-temperature resistivity saturation in the 4f Kondo insulator (KI) SmB6 has spurred proposals of a correlation-driven topological Kondo insulator (TKI) with exotic ground states. However, the scarcity of model TKI material families leaves difficulties in disentangling key ingredients from irrelevant details. Here we use angle-resolved photoemission spectroscopy (ARPES) to study FeSb2, a correlated d-electron KI candidate that also exhibits a low-temperature resistivity saturation. On the (010) surface, we find a rich assemblage of metallic states with two-dimensional dispersion. Measurements of the bulk band structure reveal band renormalization, a large temperature-dependent band shift, and flat spectral features along certain high-symmetry directions, providing spectroscopic evidence for strong correlations. Our observations suggest that exotic insulating states resembling those in SmB6 and YbB12 may also exist in systems with d instead of f electrons.

6.
Nano Lett ; 21(10): 4292-4298, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33949872

RESUMO

Moiré superlattices (MSLs) formed in van der Waals materials have become a promising platform to realize novel two-dimensional electronic states. Angle-aligned trilayer structures can form two sets of MSLs which could potentially interfere. In this work, we directly image the moiré patterns in both monolayer and twisted bilayer graphene aligned on hexagonal boron nitride (hBN), using combined scanning microwave impedance microscopy and conductive atomic force microscopy. Correlation of the two techniques reveals the contrast mechanism for the achieved ultrahigh spatial resolution (<2 nm). We observe two sets of MSLs with different periodicities in the trilayer stack. The smaller MSL breaks the 6-fold rotational symmetry and exhibits abrupt discontinuities at the boundaries of the larger MSL. Using a rigid atomic-stacking model, we demonstrate that the hBN layer considerably modifies the MSL of twisted bilayer graphene. We further analyze its effect on the reciprocal space spectrum of the dual-moiré system.

7.
Nano Lett ; 20(7): 5111-5118, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32463696

RESUMO

Eigenstate multifractality is a distinctive feature of noninteracting disordered metals close to a metal-insulator transition, whose properties are expected to extend to superconductivity. While multifractality in three dimensions (3D) only develops near the critical point for specific strong-disorder strengths, multifractality in 2D systems is expected to be observable even for weak disorder. Here we provide evidence for multifractal features in the superconducting state of an intrinsic, weakly disordered single-layer NbSe2 by means of low-temperature scanning tunneling microscopy/spectroscopy. The superconducting gap, characterized by its width, depth, and coherence peaks' amplitude, shows a characteristic spatial modulation coincident with the periodicity of the quasiparticle interference pattern. The strong spatial inhomogeneity of the superconducting gap width, proportional to the local order parameter in the weak-disorder regime, follows a log-normal statistical distribution as well as a power-law decay of the two-point correlation function, in agreement with our theoretical model. Furthermore, the experimental singularity spectrum f(α) shows anomalous scaling behavior typical from 2D weakly disordered systems.

8.
J Environ Manage ; 283: 111941, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33503513

RESUMO

The heterogeneous Fenton-like catalyst (Mg,Cu,Ni)(Fe,Al)2O4 was synthesized via a coprecipitation method using laterite nickel ore leaching solution as raw material. The effects of CuCl2·2H2O addition and calcination temperature on the microstructures and degradation properties of the obtained products were investigated. Results showed that higher calcination temperature could promote the migration of Cu2+ ions from CuO to the spinel ferrite lattice and occupied octahedral sites. The degradation efficiencies (η) of various types of low-concentration dyes and tetracycline were higher than 95%, which was mainly due to the accelerated generation of OH radicals by the synergistic effect of Fe3+ and Cu2+ ions in octahedral sites of the formed (Mg,Cu,Ni)(Fe,Al)2O4. Moreover, after five consecutive degradation cycles, the η of RhB was still close to 100%, TOC removal efficiency was maintained around 40% and the concentrations of metallic ions in degraded solutions were all lower than the national effluent discharge standard (GB8978-1996), confirming the as-obtained (Mg,Cu,Ni)(Fe,Al)2O4 was an eco-friendly heterogeneous Fenton-like catalyst with excellent stability and reusability. This study may provide an effective reference for large scale preparing efficient heterogeneous Fenton-like catalysts from natural minerals in treating the wastewater contaminated by refractory organics.


Assuntos
Ferro , Níquel , Catálise , Peróxido de Hidrogênio , Águas Residuárias
9.
Pak J Med Sci ; 37(2): 403-408, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679922

RESUMO

OBJECTIVE: To investigate the biomechanical effects of osteoporosis on adjacent segments after posterior lumbar interbody fusion (PLIF). METHODS: This study was designed and conducted in the Traumatology and Orthopedics Laboratory, School of Chinese Medicine, Jinan University, Guangzhou, China, between December 2019 and February 2020. A healthy finite element model of L3-S1 was developed along with one PLIF model and one PLIF with osteoporosis model. Based on a hybrid test method, the inferior surface of S1 was entirely fixed, and a preload of 400N combined with an adjusted moment was imposed on the superior surface of L3 in each model to simulate flexion, extension, lateral bending and axial rotation. The intradiscal pressure (IDP), shear stress on annulus fibrosus, and the range of motion (ROM) of L3-L4 and L5-S1 were calculated and compared. RESULTS: In each direction, the highest value of IDP and shear stress on annulus fibrosus at L3-L4 and L5-S1 was found in the PLIF model, and the lowest value in the healthy model. The largest ROM at L4-L5 appeared in the healthy model, and the smallest value in the PLIF model in each direction. At L3-L4 and L5-S1, the highest ROM in most directions was found in the PLIF model, followed by the PLIF with osteoporosis model, and the lowest value in the healthy model. CONCLUSIONS: Osteoporosis can decrease IDP, shear stress on annulus fibrosus, and ROM at adjacent levels, and slow down the development of ASD after PLIF.

10.
Nanotechnology ; 31(16): 165704, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-31891932

RESUMO

Recently, Bi2O2Se was revealed as a promising two-dimensional (2D) semiconductor for next generation electronics, due to its moderate bandgap size, high electron mobility and pronounced ambient stability. Meanwhile, it has been predicted that high-quality Bi2O2Se-related heterostructures may possess exotic physical phenomena, such as piezoelectricity and topological superconductivity. Herein, we report the first successful heteroepitaxial growth of Bi2O2Se films on SrTiO3 substrates via pulsed laser deposition (PLD) method. Films obtained under optimal conditions show an epitaxial growth with the c axis perpendicular to the film surface and the a and b axes parallel to the substrate. The growth mode transition to three-dimensional (3D) island from quasi-2D layer of the heteroepitaxial Bi2O2Se films on SrTiO3 (001) substrates is observed as prolonging deposition time of films. The maximum value of electron mobility reaches 160 cm2 V-1 s-1 at room temperature in a 70 nm thick film. The thickness dependent mobility provides evidence that interface-scattering is likely to be the limiting factor for the relatively low electron mobility at low temperature, implying that the interface engineering as an effective method to tune the low temperature electron mobility. Our work suggests the epitaxial Bi2O2Se films grown by PLD are promising for both fundamental study and practical applications.

11.
Neurosurg Rev ; 43(3): 813-823, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30259268

RESUMO

Three fixation modalities including suture suspensory, anchor, and titanium plate are used extensively in unilateral open-door cervical laminoplasty. Nevertheless, up to now no systematic review and network meta-analysis have been published, and the differences in efficacy and safety of the three fixation modalities are still unclear. The purpose of this study is to compare the effectiveness and safety of the three fixation modalities including suture suspensory, anchor, and titanium plate in unilateral open-door cervical laminoplasty. Randomized controlled trials and cohort studies which compared the three interventions in unilateral open-door cervical laminoplasty were identified using the following databases: PubMed, Cochrane Library, Embase, Web of science, China National Knowledge Infrastructure, Chinese Science and Technology Periodical Database, and Wanfang data. Network meta-analysis was performed using R 3.4.3 software and STATA version 14.0. The results revealed that compared with suture suspensory, titanium plate and anchor showed the same effects in Japanese Orthopedic Association Scores, operative time, and blood loss. However, titanium plate showed superiority in postoperative range of motion of cervical spine, incidence of axial symptoms, and C5 paralysis; in terms of cervical curvature, titanium plate also showed better effectiveness than suture suspensory, but similar as anchor. Our network meta-analysis suggests that titanium plate is preferable to suture suspensory or anchor with more range of motion and lower incidence of axial symptoms and C5 paralysis. However, considering the limitations of this research, high-quality trials are needed in the future to evaluate the outcomes.


Assuntos
Vértebras Cervicais/cirurgia , Fixadores Internos , Procedimentos Neurocirúrgicos/métodos , Humanos , Laminoplastia , Metanálise em Rede , Resultado do Tratamento
12.
Nano Lett ; 19(8): 5634-5639, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31329449

RESUMO

We report the creation and manipulation of structural phase boundaries in the single-layer quantum spin Hall insulator 1T'-WSe2 by means of scanning tunneling microscope tip pulses. We observe the formation of one-dimensional interfaces between topologically nontrivial 1T' domains having different rotational orientations, as well as induced interfaces between topologically nontrivial 1T' and topologically trivial 1H phases. Scanning tunneling spectroscopy measurements show that 1T'/1T' interface states are localized at domain boundaries, consistent with theoretically predicted unprotected interface modes that form dispersive bands in and around the energy gap of this quantum spin Hall insulator. We observe a qualitative difference in the experimental spectral line shape between topologically "unprotected" states at 1T'/1T' domain boundaries and protected states at 1T'/1H and 1T'/vacuum boundaries in single-layer WSe2.

13.
J Manipulative Physiol Ther ; 43(5): 446-456, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32829947

RESUMO

OBJECTIVE: To compare the biomechanical effect of lumbar fixed-point oblique pulling manipulation and traditional oblique pulling manipulation in the treatment of protrusion of lumbar intervertebral disk, and investigate the influence of disk degeneration on the 2 manipulations. METHODS: Three finite element models including 1 normal model, 1 mild degeneration, and 1 moderate degeneration model of L3-S1 were developed to simulate 2 oblique pulling manipulations. The disk protrusion was assumed to be in the left central and subarticular zone of the L4-L5 disk, and manipulations were carried out on the right. A 15-Nm right axial rotation moment and 150-N compressive loading were imposed on the upper endplate of L3 to simulate a traditional oblique pulling manipulation. To simulate lumbar fixed-point oblique pulling manipulation, in addition to a 15-Nm moment and 150-N compressive loading imposed on the L3 upper endplate, a 50-N force was imposed on the right lateral area of the L4 spinous process in a left front direction. The displacement and stress in the left central and subarticular zone of the L4-L5 disk were calculated and compared in the 3 models. RESULTS: The average displacement and stress in the left central and subarticular zone of L4-L5 disk were higher in fixed-point oblique pulling manipulation than those in traditional oblique pulling manipulation (P < .05). In addition, the values of average stress and displacement decreased significantly with the increase of lumbar disk degeneration (P < .05). CONCLUSION: Lumbar fixed-point oblique pulling manipulation showed a better biomechanical effect than traditional oblique pulling manipulation, and lumbar disk degeneration affected the 2 manipulations adversely in the virtual treatment of protrusion of the lumbar intervertebral disk using finite element models.


Assuntos
Degeneração do Disco Intervertebral/terapia , Deslocamento do Disco Intervertebral/terapia , Vértebras Lombares/fisiopatologia , Região Lombossacral/fisiopatologia , Fenômenos Biomecânicos/fisiologia , Análise de Elementos Finitos , Humanos , Disco Intervertebral
14.
Nano Lett ; 18(2): 689-694, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29300484

RESUMO

We present the electronic characterization of single-layer 1H-TaSe2 grown by molecular beam epitaxy using a combined angle-resolved photoemission spectroscopy, scanning tunneling microscopy/spectroscopy, and density functional theory calculations. We demonstrate that 3 × 3 charge-density-wave (CDW) order persists despite distinct changes in the low energy electronic structure highlighted by the reduction in the number of bands crossing the Fermi energy and the corresponding modification of Fermi surface topology. Enhanced spin-orbit coupling and lattice distortion in the single-layer play a crucial role in the formation of CDW order. Our findings provide a deeper understanding of the nature of CDW order in the two-dimensional limit.

15.
Pak J Med Sci ; 35(3): 658-662, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31258571

RESUMO

OBJECTIVES: To evaluate the depression and anxiety status and related risk factors in patients with lumbar disc herniation, and help spine surgeons better identify those patients who need psychological care. METHODS: A cross-sectional study was performed on patients with lumbar disc herniation treated in our hospital between October 2015 and August 2018. Visual analog scale and Oswestry disability index were used to assess pain intensity and lumbar function, and Zung self-rating depression and anxiety scale were employed to evaluate the depression and anxiety status of the patients, and the demographic and clinical data including age, gender, marital status, occupation type, employment status, education level, surgery history, herniation type, disease duration, and insurance status were collected for analysis. RESULTS: In the current study, 165 patients were enrolled based on the inclusion and exclusion criteria. In multivariate logistic regression analysis, gender (p=0.03), pain intensity (p=0.01), self-rating anxiety scale (SAS) (p=0.00), and disease duration (p=0.001) were identified as independent risk factors for depression status, and pain intensity (p=0.02), disease duration (p=0.002) and SDS (Zung self-rating depression scale) (p=0.003) were independent risk factors for anxiety status in patients with lumbar disc herniation. There was a significant correlation between Zung self-rating depression and anxiety scale in patients with lumbar disc herniation (p<0.05). CONCLUSION: Psychological intervention is critical for patients with lumbar disc herniation, especially for those female patients with severe pain and longer disease duration.

16.
Pak J Med Sci ; 34(4): 879-885, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30190746

RESUMO

OBJECTIVE: To compare the effectiveness of exercise therapy with surgery for lumbar spinal stenosis. METHODS: Five English databases PubMed, the Cochrane Library, Web of science, OVID and PEDro database were searched for randomized controlled trials comparing surgical procedures with exercise therapy for lumbar spinal stenosis. Information on patients, study design, inclusion criteria, intervention and follow-up, outcomes, treatment details and adverse events were extracted. Meta-analysis was performed using Review Manager Version 5.3. RESULTS: Two randomized controlled trials and one mixed design trial with a total of 897 patients were included. The pooled results showed a significant difference between exercise and surgery in Oswestry Disability Index at two years (MD= 3.85, 95%CI: 0.48 to 7.22; P=0.03), but no significant difference at six months (MD= 2.18, 95%CI: -2.80 to 7.17; P=0.39) and one year (MD= 4.26, 95%CI: -1.79 to 10.32; P=0.17). In terms of physical function of 36 Items Short Form Health Survey, there were no significant differences between exercise and surgery at six months (MD= -2.23, 95% CI: -7.46 to 2.99; P=0.40), one year (MD= -2.17, 95% CI: -7.44 to 3.10; P=0.42) and two years (MD= -0.67, 95% CI: -6.16 to 4.82; P=0.81). CONCLUSION: In brief, the current evidence demonstrated a trend that exercise therapy had a similar effect for lumbar spinal stenosis compared with decompressive laminectomies. However, for the small sample size and low methodology quality of the included trials, some rigorously designed and large-scaled RCTs need to be performed to confirm the conclusion.

17.
Pak J Med Sci ; 34(4): 897-900, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30190749

RESUMO

OBJECTIVE: To evaluate the efficacy of core stability exercise versus conventional exercise in the treatment of lumbar spinal stenosis. METHODS: Between January 2014 and May 2017, patients with lumbar spinal stenosis were recruited and divided into group of core stability exercise or conventional exercise randomly. All the patients were treated using middle frequency electrotherapy, in addition to that, the patients in group of core stability exercise were treated using core stability exercise. The patients in group of conventional exercise were treated using conventional exercise. The outcome was evaluated using Japanese Orthopedic Association (JOA) score, self-reported walking capacity and lumbar lordosis angle at baseline and after treatment. RESULTS: In the current study, sixty-two patients with lumbar spinal stenosis met the inclusion and exclusion criteria, in which 33 patients were included in group of core stability exercise and 29 in group of conventional exercise. After treatment, both Japanese Orthopedic Association scores (p<0.05) and self-reported walking capacity (p<0.05) increased significantly in each group when compared with baseline. The self-reported walking capacity and JOA scores in the group of core stability exercise were significantly higher than those in the conventional exercise group (p<0.05). However, both the intragroup and intergroup comparison of lumbar lordosis presented with no significance (p>0.05). CONCLUSION: Core stability exercise presents with better efficacy than conventional exercise in the treatment of lumbar spinal stenosis.

18.
Nano Lett ; 16(4): 2485-91, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26974978

RESUMO

High quality WSe2 films have been grown on bilayer graphene (BLG) with layer-by-layer control of thickness using molecular beam epitaxy. The combination of angle-resolved photoemission, scanning tunneling microscopy/spectroscopy, and optical absorption measurements reveal the atomic and electronic structures evolution and optical response of WSe2/BLG. We observe that a bilayer of WSe2 is a direct bandgap semiconductor, when integrated in a BLG-based heterostructure, thus shifting the direct-indirect band gap crossover to trilayer WSe2. In the monolayer limit, WSe2 shows a spin-splitting of 475 meV in the valence band at the K point, the largest value observed among all the MX2 (M = Mo, W; X = S, Se) materials. The exciton binding energy of monolayer-WSe2/BLG is found to be 0.21 eV, a value that is orders of magnitude larger than that of conventional three-dimensional semiconductors, yet small as compared to other two-dimensional transition metal dichalcogennides (TMDCs) semiconductors. Finally, our finding regarding the overall modification of the electronic structure by an alkali metal surface electron doping opens a route to further control the electronic properties of TMDCs.

19.
Pak J Med Sci ; 33(3): 631-634, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28811784

RESUMO

OBJECTIVE: To determine whether the effectiveness of core stability exercises correlates with the severity of spinal stenosis in patients with degenerative lumbar spinal stenosis. METHODS: Forty-two patients with degenerative lumbar spinal stenosis treated in the department of orthopedics of our hospital between May 2013 and January 2016 were included in the study. All the patients performed core stability exercises once daily for six weeks, and the clinical outcomes were evaluated using Japanese Orthopaedic Association (JOA) score and self-reported walking capacity. The anteroposterior osseous spinal canal diameter was measured to evaluate the severity of spinal stenosis. The correlation between the stenosis degree and the differences of Japanese Orthopaedic Association score or self-reported walking capacity at baseline and after treatment were analyzed. RESULTS: The patients were divided into three groups according to the spinal stenosis degree. In the three groups, there was no significant difference in JOA or self-reported walking distance at baseline (p>0.05) and after treatment (p>0.05). The JOA scores and self-reported walking distance were significantly increased after treatment (p<0.05) in any of the three groups when compared to the baseline. Also, there was no significant correlation between the stenosis degree and the difference of JOA (p>0.05) or self-reported walking distance (p>0.05). CONCLUSION: There was no significantcorrelation between the effectiveness of core stability exercises and the severity of spinal stenosis in patients with degenerative lumbar spinal stenosis.

20.
Phys Rev Lett ; 117(26): 267201, 2016 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-28059532

RESUMO

An extreme magnetoresistance (XMR) has recently been observed in several nonmagnetic semimetals. Increasing experimental and theoretical evidence indicates that the XMR can be driven by either topological protection or electron-hole compensation. Here, by investigating the electronic structure of a XMR material, YSb, we present spectroscopic evidence for a special case which lacks topological protection and perfect electron-hole compensation. Further investigations reveal that a cooperative action of a substantial difference between electron and hole mobility and a moderate carrier compensation might contribute to the XMR in YSb.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA