Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Gene Med ; 26(1): e3609, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37849429

RESUMO

BACKGROUND: Liver cancer, a common malignancy within the digestive system, presents with a particularly grim prognosis. Within the immune microenvironment, the role of natural killer (NK) cells in liver cancer remains unclear. METHODS: We sourced data on clinical parameters and gene expressions for liver cancer patients from The Cancer Genome Atlas Program database and carried out all analyses using R software and its relevant codes. RESULTS: In our research, we delved into the genes intertwined with NK cells in hepatocellular carcinoma (HCC). Leveraging the QUANTISEQ and MCPCOUNTER algorithms to quantify NK cells, we spotlighted genes vital to the recruitment of NK cells. Among these genes, GDE1, WDFY3, DNAJB14, PKD2, DGAT2, SGMS2 and MKNK2 showed a strong correlation with patient outcomes. We also mapped out the single-cell expression trajectories of these genes within the HCC milieu. From our findings, SGMS2 emerged as a key gene warranting further scrutiny. Our in-depth analysis of SGMS2 shed light on its influence over specific biological pathways, its contribution to the immune landscape and its role in genomic instability within HCC. Drawing from this, we formulated a predictive model rooted in SGMS2-associated genes. This model showcased remarkable precision across both training and validation cohorts. CONCLUSIONS: Overall, our investigation underscored the profound implications of SGMS2, a gene pivotal to NK cell infiltration, in the landscape of HCC, thereby positioning it as a potential linchpin in oncological strategies.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Células Matadoras Naturais/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Microambiente Tumoral/genética
2.
Invest New Drugs ; 42(2): 185-195, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38372948

RESUMO

Acquired resistance is a significant hindrance to clinical application of lenvatinib in unresectable hepatocellular carcinoma (HCC). Further in-depth investigation of resistance mechanisms can help to develop additional therapeutic strategies to overcome or delay resistance. In our study, two lenvatinib-resistant (LR) HCC cell lines were established by treatment with gradient increasing concentration of lenvatinib, named Hep3B-LR and HepG2-LR. Interestingly, continuous lenvatinib treatment reinforced epithelial-mesenchymal transition (EMT), cell migration, and cell invasion. Gene set enrichment analysis (GSEA) enrichment analysis of RNA-sequencing from Hep3B-LR and corresponding parental cells revealed that activation of Wnt signaling pathway was involved in this adaptive process. Active ß-catenin and its downstream target lymphoid enhancer binding factor 1 (LEF1) were significantly elevated in LR HCC cells, which promoted lenvatinib resistance through mediating EMT-related genes. Data analysis based on Gene Expression Omnibus (GEO) and the Cancer Genome Atlas Program (TCGA) databases suggests that LEF1, as a key regulator of EMT, was a novel molecular target linked to lenvatinib resistance and poor prognosis in HCC. Using a small-molecule specific inhibitor ICG001 and knocking down LEF1 showed that targeting LEF1 restored the sensitivity of LR HCC cells to lenvatinib. Our results uncover upregulation of LEF1 confers lenvatinib resistance by facilitating EMT, cell migration, and invasion of LR HCC cells, indicating that LEF1 is a novel therapeutic target for overcoming acquired lenvatinib resistance.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Compostos de Fenilureia , Quinolinas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/genética , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica
3.
Biochem Biophys Res Commun ; 684: 149137, 2023 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-37897911

RESUMO

Abnormal vascularization plays a crucial role in cell proliferation, tumor invasion and metastasis of hepatocellular carcinoma (HCC). It has been reported that ETV4 functions as an oncogenic gene in driving the carcinogenesis and progression, and promoting invasion and metastasis of HCC. However, the function of ETV4 on angiogenesis in HCC remains unclear. In the current study, immunohistochemistry showed that knockdown of ETV4 reduced angiogenesis in HCC xenograft tumor tissues. In vitro, tube formation assay verified that ETV4 expression promoted angiogenesis through simulating the angiogenic environment in HCC cells. Transcriptome sequencing indicated that MMP14 was one of the differentially expressed genes enriched in angiogenesis process. Subsequently, it was confirmed that MMP14 was regulated by ETV4 at the transcription level in HCC cells, clinical tissue samples and online databases. Further, we demonstrated that MMP14 induced angiogenesis in ETV4-mediated HCC microenvironment. Collectively, this research further reveals the biological mechanism of ETV4 in promoting the migration and invasion of HCC, and provides novel mechanistic insights and strategic guidance for anti-angiogenic therapy in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Metaloproteinase 14 da Matriz/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Microambiente Tumoral , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Proto-Oncogênicas c-ets/metabolismo
4.
Cancer Cell Int ; 23(1): 277, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978523

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, with a high mortality and poor survival rate. Abnormal tumor metabolism is considered a hallmark of HCC and is a potential therapeutic target. This study aimed to identify metabolism-related biomarkers to evaluate the prognosis of patients with HCC. METHOD: The Cancer Genome Atlas (TCGA) database was used to explore differential metabolic pathways based on high and low epithelial-mesenchymal transition (EMT) groupings. Genes in differential metabolic pathways were obtained for HCC metabolism-related molecular subtype analysis. Differentially expressed genes (DEGs) from the three subtypes were subjected to Lasso Cox regression analysis to construct prognostic risk models. Stard5 expression in HCC patients was detected by western blot and immunohistochemistry (IHC), and the role of Stard5 in the metastasis of HCC was investigated by cytological experiments. RESULTS: Unsupervised clustering analysis based on metabolism-related genes revealed three subtypes in HCC with differential prognosis. A risk prognostic model was constructed based on 11 genes (STARD5, FTCD, SCN4A, ADH4, CFHR3, CYP2C9, CCL14, GADD45G, SOX11, SCIN, and SLC2A1) obtained by LASSO Cox regression analysis of the three subtypes of DEGs. We validated that the model had a good predictive power. In addition, we found that the high-risk group had a poor prognosis, higher proportion of Tregs, and responded poorly to chemotherapy. We also found that Stard5 expression was markedly decreased in HCC tissues, which was associated with poor prognosis and EMT. Knockdown of Stard5 contributed to the invasion and migration of HCC cells. Overexpression of Stard5 inhibited EMT in HCC cells. CONCLUSION: We developed a new model based on 11 metabolism-related genes, which predicted the prognosis and response to chemotherapy or immunotherapy for HCC. Notably, we demonstrated for the first time that Stard5 acted as a tumor suppressor by inhibiting metastasis in HCC.

5.
Cancer Cell Int ; 23(1): 52, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959615

RESUMO

BACKGROUND: Abnormal miRNA and mRNA expression and dysregulated immune microenvironment have been found to frequently induce the progression of hepatocellular carcinoma (HCC) in recent reports. In particular, the immune-related competing endogenous RNAs (ceRNA) mechanism plays a crucial role in HCC progression. However, the underlying mechanisms remain unclear. METHODS: Differentially expressed immune-related genes were obtained from the Immport, GEO, and TCGA databases. The mRNA and protein expression levels in HCC tissues and adjacent normal tissues were confirmed, and we further investigated the methylation levels of these biomarkers to explore their function. Then, the TIMER and TISCH databases were used to assess the relationship between immune infiltration and hub genes. Survival analysis and univariate and multivariate Cox models were used to evaluate the association between hub genes and HCC diagnosis. Hub gene expression was experimentally validated in six HCC cell lines and 15 HCC samples using qRT-PCR and immunohistochemistry. The hub genes were uploaded to DSigDB for drug prediction enrichment analysis. RESULTS: We identified that patients with abnormal miRNAs (hsa-miR-125b-5p and hsa-miR-21-5p) and their targeted genes (NTF3, PSMD14, CD320, and SORT1) had a worse prognosis. Methylation analysis of miRNA-targeted genes suggested that alteration of methylation levels is also a factor in the induction of tumorigenesis. We also found that the development of HCC progression caused by miRNA-mRNA interactions may be closely correlated with the infiltration of immunocytes. Moreover, the GSEA, GO, and KEGG analysis suggested that several common immune-related biological processes and pathways were related to miRNA-targeted genes. The results of qRT-PCR, immunohistochemistry, and western blotting were consistent with our bioinformatics results, suggesting that abnormal miRNAs and their targeted genes may affect HCC progression. CONCLUSIONS: Briefly, our study systematically describes the mechanisms of miRNA-mRNA interactions in HCC and predicts promising biomarkers that are associated with immune filtration for HCC progression.

6.
Medicina (Kaunas) ; 59(4)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37109675

RESUMO

Background and Objectives: M2 macrophages play an important role in cancers. Our study aimed to illustrate the effect of M2 macrophages in pancreatic cancer (PC). Materials and Methods: The open-access data used for analysis were downloaded from The Cancer Genome Atlas Program database, as well as some online databases. R software was mainly used for data analysis based on the specific packages. Results: Here, we comprehensively investigated the role of M2 macrophages and their related genes in PC. We performed the biological enrichment of M2 macrophages in PC. Meanwhile, we identified adenosine A3 receptor (TMIGD3) as the interest gene for further analysis. The single-cell analysis showed that was mainly expressed in the Mono/Macro cells based on the data from multiple data cohorts. Biological investigation showed that TMIGD3 was primarily enriched in angiogenesis, pancreas-beta cells and TGF-beta signaling. Tumor microenvironment analysis indicated that TMIGD3 was positively correlated with monocyte_MCPCOUNTER, NK cell_MCPCOUNTER, macrophages M2_CIBERSORT, macrophage_EPIC, neutrophil_TIMER and endothelial cell_MCPCOUNTER. Interestingly, we determined that all the immune functions quantified by single sample gene set enrichment analysis algorithms were activated in the patients with high TMIGD3 expression. Conclusions: Our results provide a novel direction for the research focused on the M2 macrophages in PC. Meanwhile, TMIGD3 was identified as an M2 macrophage-related biomarker for PC.


Assuntos
Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/genética , Macrófagos , Monócitos , Algoritmos , Prognóstico , Microambiente Tumoral , Neoplasias Pancreáticas
7.
J Transl Med ; 20(1): 379, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-36038907

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most malignant tumors to threaten human life, and the survival rate remains low due to delayed diagnosis. Meanwhile, lncRNAs have great potential for application in tumor prognosis, therefore relevant research in hepatocellular carcinoma is indispensable. METHODS: Based on the EZH2 expression, the differentially expressed lncRNAs DElncRNAs), miRNAs (DEmiRNAs), and mRNAs (DEmRNAs) were identified in hepatocellular carcinoma by using the TCGA database. Bioinformatics technology was utilized to determine the effect of key genes in HCC progression. The methylation and immune infiltration analyses were performed to explore the underlying function of hub genes. Finally, cellular function experiments were performed to investigate the association between identified genes and biological phenotypes in HCC. RESULTS: lncRNA-AC079061.1, hsa-miR-765, and VIPR1 were identified as independent factors that affect the prognosis of hepatocellular carcinoma. The immune infiltration analyses revealed that lncRNA-AC079061.1 can alter the immune microenvironment and thus inhibit the development of HCC by regulating the expression of an immune-related gene (VIPR1). Methylation analyses demonstrated that VIPR1 expression is negatively related to the methylation level in HCC. Experimental results suggested that lncRNA-AC079061.1 and VIPR1 were frequently downregulated in HCC cells, while hsa-miR-765 was significantly upregulated. Moreover, the lncRNA-AC079061.1/VIPR1 axis suppressed the proliferation and invasion of HCC cells. CONCLUSION: The present study identified the lncRNA-AC079061.1/VIPR1 axis as a novel biomarker that inhibited the proliferation and invasion of hepatocellular carcinoma, affecting the ultimate disease outcome.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Carcinoma Hepatocelular/patologia , Biologia Computacional , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/genética , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/metabolismo , Microambiente Tumoral
8.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 39(8): 854-858, 2022 Aug 10.
Artigo em Zh | MEDLINE | ID: mdl-35929935

RESUMO

OBJECTIVE: To explore the genetic basis for a Chinese pedigree affected with microphthalmia. METHODS: Clinical data of the proband was collected. Whole exome sequencing (WES) was carried out to screen potential pathogenic variants in the proband. Candidate variant was verified by Sanger sequencing of the proband and his family members. Pathogenicity of the variant was predicted by searching the PubMed database and bioinformatic analysis. Sanger sequencing of amniotic fluid sample was carried out for prenatal diagnosis. RESULTS: The proband and his father were found to harbor a heterozygous c.151C>G (p.R51G) variant of the MAB21L2 gene. The same variant was not found in his mother and grandparents. Based on the guidelines of American College of Medical Genetics, the c.151C>G (p.R51G) variant was predicted as likely pathogenic. CONCLUSION: The c.151C>G (p.R51G) variant of the MAB21L2 gene probably underlay the microphthalmia in the proband. Above finding has facilitated prenatal diagnosis for this pedigree.


Assuntos
Coloboma , Microftalmia , Osteocondrodisplasias , China , Proteínas do Olho , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Microftalmia/diagnóstico , Microftalmia/genética , Mutação , Linhagem , Gravidez , Diagnóstico Pré-Natal
9.
Mol Med ; 27(1): 95, 2021 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-34470609

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs), a type of pervasive genes that regulates various biological processes, are differentially expressed in different types of malignant tumors. The role of lncRNAs in the carcinogenesis of pancreatic ductal adenocarcinoma (PDAC) remains unclear. Here, we investigated the role of the lncRNA DKFZp434J0226 in PDAC. METHODS: Aberrantly expressed mRNAs and lncRNAs among six PDAC and paired non-tumorous tissues were profiled using microarray analysis. Quantitative real-time polymerase chain reaction was used to evaluate DKFZp434J0226 expression in PDAC tissues. CCK-8 assay, wound-healing assay, soft agar colony formation assay, and transwell assay were performed to assess the invasiveness and proliferation of PDAC cells. Furthermore, RNA pull-down, immunofluorescence, RNA immunoprecipitation, and western blotting assays were performed to investigate the association between DKFZp434J0226 and SF3B6. Tumor xenografts in mice were used to test for tumor formation in vivo. RESULTS: In our study, 222 mRNAs and 128 lncRNAs were aberrantly expressed (≥ twofold change). Of these, 66 mRNAs and 53 lncRNAs were upregulated, while 75 lncRNAs and 156 mRNAs were downregulated. KEGG pathway analysis and the Gene ontology category indicated that these genes were associated with the regulation of mRNA alternative splicing and metabolic balance. Clinical analyses revealed that overexpression of DKFZp434J0226 was associated with worse tumor grading, frequent perineural invasion, advanced tumor-node-metastasis stage, and decreased overall survival and time to progression. Functional assays demonstrated that DKFZp434J0226 promoted PDAC cell migration, invasion, and growth in vitro and accelerated tumor proliferation in vivo. Mechanistically, DKFZp434J0226 interacted with the splicing factor SF3B6 and promoted its phosphorylation, which further regulated the alternative splicing of pre-mRNA. CONCLUSIONS: This study indicates that DKFZp434J0226 regulates alternative splicing through phosphorylation of SF3B6 in PDAC and leads to an oncogenic phenotype in PDAC.


Assuntos
Processamento Alternativo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fatores de Processamento de RNA/metabolismo , RNA Longo não Codificante , Animais , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Biologia Computacional/métodos , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Camundongos , Neoplasias Pancreáticas/patologia , Fosforilação , Prognóstico , Ligação Proteica , Transporte Proteico , Transcriptoma , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias Pancreáticas
10.
BMC Cancer ; 21(1): 1160, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34715817

RESUMO

BACKGROUND: Ferroptosis, a new form of programmed cell death, has great potential for cancer treatment. However, the roles of ferroptosis-related (FR) genes in breast cancer (BC) remain elusive. MATERIALS AND METHODS: Using TCGA database, a novel FR risk signature was constructed through the Lasso regression analysis. Meanwhile, its prognostic value was assessed by a series of survival analyses. Besides, a nomogram was constructed to predict the overall survival rate (OSR) of individual at 1,3,5 year. Four validation cohorts (n = 2248), including METABRIC, GSE58812, GSE20685 and ICGC-KR datasets, were employed to test the prognostic value of FR risk signature. The effects of FR risk signature on BC immune microenvironment were explored by CIBERSORT algorithm and ssGSEA method. The histological expressions of FR risk genes were presented by HPA database. The biofunctions of SQLE were determined by qPCR, MTT, wound-healing and Transwell assays. RESULTS: We constructed a novel FR risk signature consisting of eight genes. High FR risk led a poor prognosis and was identified as an independent prognostic factor. Besides, A higher proportion of patients with luminal A type was observed in low-risk group (53%), while a higher proportion of patients with basal type in high-risk group (24%). FR risk score could discriminate the prognostic difference of most clinical subgroups, except for M1 stage, HER2 and basal types. Moreover, its prognostic value was successfully validated in other four cohorts. Through immune analyses, we found that the reduced infiltration levels of CD8+ and NK cells, whereas the enhanced activity of antigen presentation process appeared in high FR risk. Then, FR risk score was found to weakly correlate with the expressions of six immune checkpoints. Through the experiments in vitro, we confirmed that overexpression of SQLE could promote, whereas blocking SQLE could inhibit the proliferative, migrative and invasive abilities of BC cells. CONCLUSIONS: FR risk signature was conducive to BC prognostic assessment. High FR risk level was closely associated with BC immunosuppression, but may not predict ICIs efficacy. Moreover, SQLE was identified as a crucial cancer-promoting gene in BC. Our findings provide new insights into prognostic assessment and molecular mechanism of BC.


Assuntos
Neoplasias da Mama/genética , Ferroptose/genética , Esqualeno Mono-Oxigenase/genética , Microambiente Tumoral/genética , Neoplasias da Mama/imunologia , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Bases de Dados Genéticas , Progressão da Doença , Feminino , Ferroptose/fisiologia , Humanos , Células Matadoras Naturais , Pessoa de Meia-Idade , Nomogramas , Prognóstico , Análise de Regressão , Fatores de Risco , Esqualeno Mono-Oxigenase/fisiologia , Taxa de Sobrevida , Fatores de Tempo , Transcriptoma , Microambiente Tumoral/imunologia
11.
J Hepatol ; 73(6): 1446-1459, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32610114

RESUMO

BACKGROUND & AIMS: Abnormal activation of mTORC1 signaling occurs at high frequency in hepatocellular carcinoma (HCC). However, the underlying causes of this aberrant activation remain elusive. In this study, we identified ventricular zone expressed pleckstrin homology domain-containing 1 (VEPH1) as a novel tumor suppressor that acts via the mTORC1 axis. METHODS: We performed quantitative reverse-transcription PCR (92 pairs), western blot (30 pairs), and immunostaining (225 cases) assays in HCC tissue samples to evaluate VEPH1 expression. We explored the functional effects of VEPH1 on tumor growth and metastasis. Molecular and biochemical strategies were used to gain insight into mechanisms underlying the tumor-suppressive function of VEPH1. RESULTS: VEPH1 is frequently silenced in HCC tissues, primarily resulting from let-7d upregulation. Decreased VEPH1 expression is associated with poor prognosis and aggressive tumor phenotypes in patients with HCC. VEPH1 mediates its tumor-suppressing activity through regulation of cell proliferation, migration and invasion in vitro and in vivo. The VEPH1 fragments 580-625aa and 447-579 aa bind directly to TSC1 (719-1,164aa) and TSC2 (1-420 aa), respectively, enhancing TSC1/TCS2 binding and promoting translocation of TSC2 to the membrane, which leads to increased TSC2 Ser1387 phosphorylation. Subsequently, Rheb is inactivated by the GTPase activity of TSC2, inhibiting mTORC1 signaling and contributing to changes in HCC carcinogenesis and metastasis. Rapamycin, the mTOR inhibitor, can inhibit the pro-tumorigenic effect of VEPH1 knockdown. Loss of VEPH1 correlates with decreased TSC2 Ser1387 phosphorylation and increased mTOR activity in HCC specimens. CONCLUSIONS: The loss of VEPH1 leads to aberrantly activated mTORC1 signaling in HCC; rapamycin (or rapalogs) may serve as an effective treatment option for patients with HCC and dampened VEPH1 expression. LAY SUMMARY: Abnormally activated mammalian target of rapamycin (mTOR) signaling is associated with poor tumor differentiation, early tumor recurrence and worse overall survival in patients with hepatocellular carcinoma. Herein, we identify low VEPH1 expression as a potential cause of abnormally activated mTOR signaling in hepatocellular carcinoma tissues. mTOR inhibitors could thus be an effective treatment option for patients with HCC and low VEPH1 expression.


Assuntos
Carcinoma Hepatocelular , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Hepáticas , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Sirolimo/farmacologia , Proteína 1 do Complexo Esclerose Tuberosa/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo , Antibióticos Antineoplásicos/farmacologia , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/terapia , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/terapia , Estadiamento de Neoplasias , Domínios de Homologia à Plecstrina , Prognóstico , Transdução de Sinais/efeitos dos fármacos , Proteínas Supressoras de Tumor/metabolismo
12.
Analyst ; 145(4): 1427-1432, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-31850403

RESUMO

Mitophagy, the process in which cells degrade dysfunctional organelles and recycle their nutrient substances by lysosomes, plays a vital role in cell metabolism and physiology. Herein, we present a highly targeting and near-infrared (NIR) mitochondrion fluorescent probe, which can monitor the process of autophagy. The response mechanism of the probe is based on intramolecular charge transfer (ICT) for the detection of autophagy and real-time imaging of living cells. We designed a primary amine as a pH sensitizing group, and due to the ICT process, the probe exhibits green fluorescence, and when it is protonated the ICT process is broken, and the NIR fluorescence will be restored. Simultaneously, the green fluorescence of the probe disappears. This probe exhibits excellent selectivity, high sensitivity and clean responsiveness, which indicate that it can be applied for high-targeting and high-sensitive imaging of the process of autophagy in living systems.


Assuntos
Corantes Fluorescentes/química , Raios Infravermelhos , Mitofagia , Sobrevivência Celular , Transporte de Elétrons , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Modelos Moleculares , Conformação Molecular
13.
Dig Dis Sci ; 65(4): 1053-1063, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31562609

RESUMO

BACKGROUND: CAPS1 (calcium-dependent activator protein for secretion) is a multi-domain protein involved in regulating exocytosis of synaptic vesicles and dense-core vesicles. However, the expression and function of CAPS1 in cholangiocarcinoma (CCA) remains unclear. In the present study, we explored the role of CAPS1 in CCA carcinogenesis. METHODS: CAPS1 expression was explored using western blotting and immunohistochemistry in four CCA cell lines and clinical samples from 90 cases of CCA. The clinical significance of CAPS1 was analyzed. The biological function of CAPS1 in CCA cells was detected in vitro and in vivo. The underlying mechanism of CAPS1 function was explored by detecting the expression of critical molecules in its associated signaling pathways. The mechanism of CAPS1 downregulation in tumor tissues was explored using in silico prediction and luciferase reporter assays. RESULTS: CAPS1 expression was reduced in CCA cell lines and human tumor tissues. Loss of CAPS1 in tumor tissues was closely associated with poor prognosis of patients with CCA. Moreover, CAPS1 expression correlated significantly with tumor-node-metastasis stage, lymph node metastasis, and vascular invasion. Lentivirus-mediated CAPS1 overexpression substantially prevented clone formation, cell proliferation, and cell cycle progression. CAPS1 overexpression also suppressed carcinogenesis in nude mice. Mechanistically, CAPS1 overexpression greatly accelerated the ERK and p38 MAPK signal pathways. In addition, microRNA miR-30e-5p negatively regulated CAPS1 expression. CONCLUSION: These data showed that CAPS1 functions as a tumor suppressor in CCA. Reduced CAPS1 expression could indicate poor prognosis of patients with CCA.


Assuntos
Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Proteínas de Ligação ao Cálcio/biossíntese , Carcinogênese/metabolismo , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Proteínas de Transporte Vesicular/biossíntese , Idoso , Animais , Neoplasias dos Ductos Biliares/genética , Proteínas de Ligação ao Cálcio/genética , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Transformada , Linhagem Celular Tumoral , Colangiocarcinoma/genética , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Proteínas de Transporte Vesicular/genética
14.
J Mol Recognit ; 32(12): e2806, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31397025

RESUMO

The phospholipase Cγ1 (PLCγ1) is essential for T-cell signaling and activation in hepatic cancer immune response, which has a regulatory Src homology 3 (SH3) domain that can specifically recognize and interact with the PXXP-containing decapeptide segment (185 QPPVPPQRPM194 , termed as SLP76185-194 peptide) of adaptor protein SLP76 following T-cell receptor ligation. The isolated peptide can only bind to the PLCγ1 SH3 domain with a moderate affinity due to lack of protein context support. Instead of the traditional natural residue mutagenesis that is limited by low structural diversity and shifted target specificity, we herein attempt to improve the peptide affinity by replacing the two key proline residues Pro187 and Pro190 of SLP76185-194 PXXP motif with nonnatural N-substituted amino acids, as the proline is the only endogenous N-substituted amino acid. The replacement would increase peptide flexibility but can restore peptide activity by establishing additional interactions with the domain. Structural analysis reveals that the domain pocket can be divided into a large amphipathic region and a small negatively charged region; they accommodate hydrophobic, aromatic, polar, and moderate-sized N-substituted amino acid types. A systematic replacement combination profile between the peptide residues Pro187 and Pro190 is created by structural modeling, dynamics simulation, and energetics analysis, from which six improved and two reduced N-substituted peptides as well as native SLP76185-194 peptide are identified and tested for their binding affinity to the recombinant protein of the human PLCγ1 SH3 domain using fluorescence-based assays. Two N-substituted peptides, SLP76185-194 (N-Leu187/N-Gln190) and SLP76185-194 (N-Thr187/N-Gln190), are designed to have high potency (Kd  = 0.67 ± 0.18 and 1.7 ± 0.3 µM, respectively), with affinity improvement by, respectively, 8.5-fold and 3.4-fold relative to native peptide (Kd  = 5.7 ± 1.2 µM).


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Desenho de Fármacos , Neoplasias Hepáticas/metabolismo , Peptídeos/química , Fosfolipase C gama/química , Fosfoproteínas/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Modelos Moleculares , Fosfolipase C gama/metabolismo , Ligação Proteica , Termodinâmica , Domínios de Homologia de src
15.
Hepatol Res ; 49(5): 559-569, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30623526

RESUMO

AIM: Phospholipase C-γ1 (PLCG1) was previously found to be involved in a variety of oncogenic behaviors such as cell motility, cell proliferation, cell migration, and invasion. However, its function in hepatocellular carcinoma (HCC) was unknown. Here, we explored the expression pattern and function of PLCG1 in HCC progression. METHODS: Expression of PLCG1 was examined by western blotting in hepatoma cells and human tumor tissues. Expression was also detected by immunohistochemistry in 150 HCC clinical samples, and its clinical significance was analyzed. The influence of PLCG1 on HCC carcinogenesis were determined in vitro and in vivo. The underlying mechanisms were explored by detecting the expression of critical molecules of signaling pathways. RESULTS: The results showed that PLCG1 was overexpressed in hepatoma cell lines and clinical HCC tissues. Increased PLCG1 expression in tumor tissues was remarkably correlated with poor clinical features of HCC. Patients with positive PLCG1 expression in tumor tissues had shorter overall survival and relapse-free survival. Phospholipase C gamma 1 could substantially promote cell proliferation, anchor growth, and cell invasion in vitro. The in vivo study showed that inhibition of PLCG1 in hepatoma cells significantly repressed tumor growth in nude mice. Furthermore, we showed that PLCG1 might exert its function by activating the mitogen-activated protein kinase and nuclear factor-κB signaling pathways. CONCLUSION: Our data indicated that PLCG1 could act as an oncogene in HCC carcinogenesis and could serve as a valuable prognostic marker and potential therapeutic target for HCC.

16.
Cell Physiol Biochem ; 48(1): 158-172, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30001540

RESUMO

BACKGROUND/AIMS: Intrahepatic cholangiocarcinoma (ICC) is a complicated condition, with difficult diagnosis and poor prognosis. The expression and clinical significance of the farnesoid X receptor (FXR), an endogenous receptor of bile acids, in ICC is not well understood. METHODS: Western blotting and immunochemical analyses were used to determine the levels of FXR in 4 cholangiocarcinoma cell lines, a human intrahepatic biliary epithelial cell line (HIBEpic) and 322 ICC specimens, respectively, while quantitative reverse transcription polymerase chain reaction was used to detect the mRNA levels of FXR in cholangiocarcinoma cell lines. We evaluated the prognostic value of FXR expression and its association with clinical parameters. We determined the biological significance of FXR in ICC cell lines by agonist-mediated activation and lentivirus-mediated silence. IL-6 expression was tested by an enzyme-linked immunosorbent assay and flow cytometry. In vitro, cell proliferation was examined by Cell Counting Kit-8, migration and invasion were examined by wound healing and transwell assays; in vivo, tumor migration and invasion were explored in NOD-SCID mice. RESULTS: FXR was downregulated in ICC cell lines and clinical ICC specimens. Loss of FXR was markedly correlated with aggressive tumor phenotypes and poor prognosis in patients with ICC. Moreover, FXR expression also had significant prognostic value in carbohydrate antigen 19-9 (CA19-9) negative patients. The expression of FXR was negatively correlated with IL-6 levels in clinical ICC tissues. FXR inhibited the proliferation, migration, invasion and epithelial mesenchymal transition (EMT) of ICC cells via suppression of IL-6 in vitro. Obeticholic acid, an agonist of FXR, inhibited IL-6 production, tumor growth and lung metastasis of ICC in vivo. CONCLUSIONS: FXR could be a promising ICC prognostic biomarker, especially in CA19-9 negative patients with ICC. FXR inhibits the tumor growth and metastasis of ICC via IL-6 suppression.


Assuntos
Neoplasias dos Ductos Biliares/patologia , Colangiocarcinoma/patologia , Transição Epitelial-Mesenquimal , Interleucina-6/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/mortalidade , Linhagem Celular Tumoral , Colangiocarcinoma/metabolismo , Colangiocarcinoma/mortalidade , Feminino , Humanos , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/secundário , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Prognóstico , Modelos de Riscos Proporcionais , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/genética
17.
Hepatol Res ; 48(12): 967-977, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29923661

RESUMO

AIM: The polyamine catabolic enzyme, spermine oxidase (SMOX) is upregulated in chronic inflammatory conditions and linked to increased reactive oxygen species and DNA damage in various forms of cancers. The present study aims to explore the expression pattern and biological function of SMOX in hepatocellular carcinoma (HCC). METHODS: We used quantitative real-time polymerase chain reaction, Western blotting, and immunohistochemistry to examine SMOX expression in four HCC cell lines and 120 HCC clinical samples, and the clinical significance of SMOX was analyzed. The biological function of SMOX on HCC cells was detected both in vitro and in vivo. RESULTS: Results showed that SMOX was overexpressed in HCC cell lines and clinical HCC tissues. Moreover, SMOX expression levels were gradually increased in normal liver, chronic hepatitis, and HCC tissues. Increased SMOX expression was correlated with poor clinical features of HCC. Patients with positive SMOX expression in tumor tissues indicated worse overall survival (P = 0.008) and shorter relapse-free survival (P = 0.002). Knockdown of SMOX inhibited HCC cell proliferation, arrested cell cycle at S phase, and resulted in an increase of apoptosis. The in vivo study showed that inhibition of SMOX in HCC cells significantly repressed tumor growth in nude mice. Furthermore, we showed that SMOX might exert its function by regulating the phosphatidylinositol 3'-kinase/protein kinase B signaling pathway. CONCLUSION: Our data indicated that SMOX upregulation could be a critical oncogene in HCC and might serve as a valuable prognostic marker and potential therapeutic target for HCC.

18.
Dig Dis Sci ; 63(12): 3367-3375, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30155839

RESUMO

BACKGROUND AND AIMS: Pancreatic cancer is an aggressive malignancy with poor prognosis. Gemcitabine is the standard chemotherapeutic drug used to treat the disease; however, it has a low response rate. Therefore, there is an urgent need to develop new and safe therapies to enhance sensitivity to gemcitabine in treating pancreatic cancer. METHODS: The synergistic effect of gemcitabine combined with specific B cell CLL/lymphoma 2 (Bcl-2) inhibitor ABT-199 against pancreatic cancer was tested using cell viability, cell cycle, and apoptosis assays in vitro and in an MIA Paca-2 xenograft model in vivo. Its underlying mechanism was explored using western blotting analysis of Bcl-2 family proteins. RESULTS: ABT-199 not only enhanced the effect of gemcitabine on cell growth inhibition but also promoted gemcitabine-induced apoptosis in pancreatic cancer cell lines. Gemcitabine decreased the expression of anti-apoptotic protein Mcl-1 but increased the expression of anti-apoptotic protein Bcl-2. ABT-199 downregulated the gemcitabine-induced production of Bcl-2 and increased the expression of pro-apoptotic protein Bcl-2 interacting protein (BIM). Mouse xenograft experiments also confirmed the synergistic effect of gemcitabine and ABT-199 on tumor growth inhibition and the induction of tumor cell apoptosis. CONCLUSION: Our results indicated that ABT-199 improved the anti-tumor effect of gemcitabine on pancreatic cancer by downregulating gemcitabine-induced overexpression of Bcl-2. ABT-199 has already been investigated in phase 3 clinical trials for chronic lymphocytic leukemia; therefore, it may serve as a potential drug to improve the sensitivity of pancreatic cancer to gemcitabine.


Assuntos
Apoptose/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Desoxicitidina/análogos & derivados , Neoplasias Pancreáticas/tratamento farmacológico , Sulfonamidas/farmacologia , Animais , Antimetabólitos Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Desoxicitidina/farmacologia , Sinergismo Farmacológico , Expressão Gênica/efeitos dos fármacos , Genes bcl-2/genética , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Gencitabina
19.
Cell Physiol Biochem ; 38(1): 306-18, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26799063

RESUMO

BACKGROUND/AIMS: Regulatory T cells (Tregs) are associated with a poor prognosis in hepatocellular carcinoma (HCC). The purpose of the study was to explore the mechanisms of Tregs accumulation in HCC. METHODS: We analyzed the frequency of Tregs in HCC by flow cytometry and immunohistochemistry. We also established a transforming growth factor (TGF)-ß1-knockdown cell line by lentivirus-mediated RNA interference. Mouse CD4+CD25- T cells were cultured in supernatants from various cell lines. RESULTS: HCC patients had a high frequency of Tregs, and high numbers of Tregs correlated with a poor prognosis. Liver cancer cells induced Treg production by secreting TGF-ß1. In vivo experiments indicated that knockdown of TGF-ß1 reduced the numbers of Tregs and metastatic nodules in mice. CONCLUSIONS: These results indicate that cancer-secreted TGF-ß1 may increase Tregs, and TGF-ß1 knockdown might impair immunosuppression in the tumor microenvironment by decrease Tregs.


Assuntos
Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Linfócitos T Reguladores/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Antígenos CD4/metabolismo , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/mortalidade , Linhagem Celular Tumoral , Meios de Cultivo Condicionados/farmacologia , Modelos Animais de Doenças , Feminino , Fatores de Transcrição Forkhead/metabolismo , Humanos , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/mortalidade , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos C57BL , Prognóstico , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/efeitos dos fármacos , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Fator de Crescimento Transformador beta1/genética , Transplante Homólogo
20.
Int J Mol Sci ; 17(10)2016 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-27689999

RESUMO

The calcium-dependent activator protein for secretion 1 (CAPS1) regulates exocytosis of dense-core vesicles (DCVs) in neurons and neuroendocrine cells. The role of CAPS1 in cancer biology remains unknown. The purpose of this study was to investigate the role of CAPS1 in hepatocellular carcinoma (HCC). We determined the levels of CAPS1 in eight hepatoma cell lines and 141 HCC specimens. We evaluated the prognostic value of CAPS1 expression and its association with clinical parameters. We investigated the biological consequences of CAPS1 overexpression in two hepatoma cell lines in vitro and in vivo. The results showed that loss of CAPS1 expression in HCC tissues was markedly correlated with aggressive tumor phenotypes, such as high-grade tumor node metastasis (TNM) stage (p = 0.003) and absence of tumor encapsulation (p = 0.016), and was associated with poor overall survival (p = 0.008) and high recurrence (p = 0.015). CAPS1 overexpression inhibited cell proliferation and migration by changing the exocytosis-associated tumor microenvironment in hepatoma cells in vitro. The in vivo study showed that CAPS1 overexpression inhibited xenograft tumor growth. Together, these results identified a previously unrecognized tumor suppressor role for CAPS1 in HCC development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA