Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomed Chromatogr ; 37(7): e5494, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36044038

RESUMO

Mass spectrometry imaging (MSI) is a powerful label-free analysis technique that can provide simultaneous spatial distribution of multiple compounds in a single experiment. By combining the sensitive and rapid screening of high-throughput MS with spatial chemical information, metabolite analysis and morphological characteristics are presented in a single image. MSI can be used for qualitative and quantitative analysis of metabolic profiles and it can provide visual analysis of spatial distribution information of complex biological and microbial systems. Matrix-assisted laser desorption ionization, laser ablation electrospray ionization and desorption electrospray ionization are commonly used in MSI. Here, we summarize and compare these three technologies, as well as the applications and prospects of MSI in metabolomics.


Assuntos
Metabolômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
2.
Rapid Commun Mass Spectrom ; 35(17): e9149, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34156734

RESUMO

RATIONALE: Low-molecular-weight organic acids that generally contain one to three carboxyl groups are involved in many important biological processes; therefore, it is important to develop a quantitative method for analyzing organic acids in serum in order to allow an evaluation of metabolic changes. In this study, we evaluated a protocol for detecting 26 organic acids in serum based on ultrasound-assisted derivatization by gas chromatography/mass spectrometry (GC/MS). METHODS: Serum samples were prepared using ultrasound-assisted silane derivatization before GC/MS analysis to quantify concentrations of organic acids. Additionally, we investigated the variables affecting derivatization yields, including the extraction solvent, derivatization reagents, and derivatization conditions (reaction temperature, duration, and sonication parameters). The protocol was ultimately applied to detect organic acid profiles related to obesity. RESULTS: We used acetone as the extraction solvent and determined suitable derivatization conditions, as follows: BSTFA + 1% TMCS, 50°C, 10 min, and 100% ultrasound power. The protocol showed satisfactory linearity (r = 0.9958-0.9996), a low limit of detection (0.04-0.42 µmol/L), good reproducibility (coefficient of variation (CV) %: 0.32-13.76%), acceptable accuracy (recovery: 82.97-114.96%), and good stability within 5 days (CV%: 1.35-12.01% at room temperature, 1.24-14.09% at 4°C, and 1.01-11.67% at -20°C). Moreover, the protocol was successfully applied to obtain the organic acid profiles from obese and healthy control subjects. CONCLUSIONS: We identified and validated a protocol for ultrasound-assisted derivatization prior to GC/MS analysis for detecting 26 kinds of organic acids in serum. The results suggest the efficacy of this protocol for clinical applications to determine metabolic changes related to fluctuations in organic acid profiles.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Compostos Orgânicos/sangue , Ultrassom/métodos , Humanos , Compostos Orgânicos/isolamento & purificação , Soro/química
3.
Anal Chim Acta ; 1317: 342908, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39030009

RESUMO

BACKGROUND: Sugar phosphates (SPx) play important role in the metabolism of the organism. SPx such as glycerate 3-phosphate, fructose 6-phosphate and glucose 6-phosphate in biological samples have the poor stability, similar structure and low abundance, which make their separation and detection more challenging. METHOD: UiO-66-NH2 and ZrO2 coated SiO2(SBA-15) hard-core-shell adsorbents (UiO-66-NH2@SBA-15 and ZrO2@SBA-15) were synthesized, which were further used for dispersive solid-phase extraction for enriching the SPx in biological samples. The protocol was developed by UiO-66-NH2@SBA-15 and ZrO2@SBA-15 coupled with gas chromatography-mass spectrometry for the detection of trace SPx. The univariate experiment and response surface methodology were used to optimize the adsorption and desorption conditions. RESULTS: The adsorbents showed excellent adsorption capacity and specificity towards SPx, which were proved by adsorption and selective experiments. Under the optimized conditions, there were good linearity within the range of 5.0-5000.0 ng mL-1, low limits of detection (0.001-1.0 ng mL-1), low limits of quantification (0.005-5.0 ng mL-1) and good precision (relative standard deviation less than 14.7 % for intra-day and inter-day). The satisfactory recoveries (89.1-113.8 %) and precision (0.5-14.6 %) were obtained when the sorbents were used to extract SPx from serum, saliva and cell samples. Moreover, UiO-66-NH2@SBA-15 was applied to the quantitative analysis of SPx from gastric cancer patients, because of a higher adsorption capacity (169.5-196.1 mg g-1). CONCLUSIONS: UiO-66-NH2@SBA-15 showed great potential in the extraction of SPx in biological samples, which was beneficial to find out the metabolic change of SPx and explain the pathogenesis of the disease.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Estruturas Metalorgânicas , Dióxido de Silício , Extração em Fase Sólida , Zircônio , Zircônio/química , Extração em Fase Sólida/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Estruturas Metalorgânicas/química , Humanos , Dióxido de Silício/química , Adsorção , Limite de Detecção , Fosfatos/química , Ácidos Ftálicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA