Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brief Bioinform ; 25(5)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39082649

RESUMO

Systematic investigation of tumor-infiltrating immune (TII) cells is important to the development of immunotherapies, and the clinical response prediction in cancers. There exists complex transcriptional regulation within TII cells, and different immune cell types display specific regulation patterns. To dissect transcriptional regulation in TII cells, we first integrated the gene expression profiles from single-cell datasets, and proposed a computational pipeline to identify TII cell type-specific transcription factor (TF) mediated activity immune modules (TF-AIMs). Our analysis revealed key TFs, such as BACH2 and NFKB1 play important roles in B and NK cells, respectively. We also found some of these TF-AIMs may contribute to tumor pathogenesis. Based on TII cell type-specific TF-AIMs, we identified eight CD8+ T cell subtypes. In particular, we found the PD1 + CD8+ T cell subset and its specific TF-AIMs associated with immunotherapy response. Furthermore, the TII cell type-specific TF-AIMs displayed the potential to be used as predictive markers for immunotherapy response of cancer patients. At the pan-cancer level, we also identified and characterized six molecular subtypes across 9680 samples based on the activation status of TII cell type-specific TF-AIMs. Finally, we constructed a user-friendly web interface CellTF-AIMs (http://bio-bigdata.hrbmu.edu.cn/CellTF-AIMs/) for exploring transcriptional regulatory pattern in various TII cell types. Our study provides valuable implications and a rich resource for understanding the mechanisms involved in cancer microenvironment and immunotherapy.


Assuntos
Imunoterapia , Neoplasias , Fatores de Transcrição , Humanos , Neoplasias/imunologia , Neoplasias/genética , Neoplasias/terapia , Neoplasias/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Regulação Neoplásica da Expressão Gênica , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Biologia Computacional/métodos
2.
Cancer Immunol Immunother ; 72(7): 2319-2330, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36912931

RESUMO

Immunotherapy has greatly changed the status of cancer treatment, and many patients do not respond or develop acquired resistance. The related research is blocked by lacking of comprehensive resources for researchers to discovery and analysis signatures, then further exploring the mechanisms. Here, we first offered a benchmarking dataset of experimentally supported signatures of cancer immunotherapy by manually curated from published literature works and provided an overview. We then developed CiTSA ( http://bio-bigdata.hrbmu.edu.cn/CiTSA/ ) which stores 878 entries of experimentally supported associations between 412 signatures such as genes, cells, and immunotherapy across 30 cancer types. CiTSA also provides flexible online tools to identify and visualize molecular/cell feature and interaction, to perform function, correlation, and survival analysis, and to execute cell clustering, cluster activity, and cell-cell communication analysis based on single cell and bulk datasets of cancer immunotherapy. In summary, we provided an overview of experimentally supported cancer immunotherapy signatures and developed CiTSA which is a comprehensive and high-quality resource and is helpful for understanding the mechanism of cancer immunity and immunotherapy, developing novel therapeutic targets and promoting precision immunotherapy for cancer.


Assuntos
Neoplasias , Análise da Expressão Gênica de Célula Única , Humanos , Neoplasias/genética , Neoplasias/terapia , Imunoterapia
3.
J Fluoresc ; 26(4): 1421-9, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27234255

RESUMO

A novel diarylethene derivative with a Rhodamine B unit was synthesized successfully. It displayed favorable photochromism upon irradiation with UV/vis light. Upon addition of Hg(2+), distinct changes were observed in the absorption and fluorescent spectra due to the formation of a 1:1 ligand/metal complex. As a result, the diarylethene can serve as a fluorescence / colorimetric dual-channel sensor for highly selective and sensitive recognition of Hg(2+) in acetonitrile. Moreover, a complicated logic circuit was constructed with the combinational stimuli of UV/vis, Hg(2+)/ EDTA as input signals and the fluorescence intensity at 605 nm as output signal.

4.
Comput Struct Biotechnol J ; 21: 2471-2482, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077174

RESUMO

Cancer is a highly heterogeneous disease, and different individuals of the same cancer type can display different therapeutic effects and prognosis. Genetic variation of long non-coding RNA is the key factor driving tumor development, and plays an important role in genetic and biological heterogeneity. Therefore, it is of great significance to identify lncRNA as a driving factor in the non-coding region and explain its function in tumors for revealing the pathogenesis of cancer. In this study, we developed an integrated method to identify Personalized Functional Driver lncRNAs (PFD-lncRNAs) by integrating the DNA copy number data, gene expression data, and the biological subpathways information. Then, we applied the method to identify 2695 PFD-lncRNAs in 5334 samples across 19 cancer types. We performed an analysis of the association between PFD-lncRNAs and drug sensitivity, which provides medication guidance in disease therapy and drug discovery in the individual. Our research is of great significance for elucidating the biological roles of lncRNA genetic variation in cancer, revealing the related mechanism of cancer, and providing novel insights for individualized medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA