Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nitric Oxide ; 142: 47-57, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38049061

RESUMO

BACKGROUND: Endothelial-mesenchymal transition (EndMT) induced by low shear stress plays an important role in the development of atherosclerosis. However, little is known about the correlation between hydrogen sulfide (H2S), a protective gaseous mediator in atherosclerosis and the process of EndMT. METHODS: We constructed a stable low-shear-stress-induced(2 dyn/cm2) EndMT model, acombined with the pretreatment method of hydrogen sulfide slow release agent(GYY4137). The level of MEST was detected in the common carotid artery of ApoE-/- mice with local carotid artery ligation. The effect of MEST on atherosclerosis development in vivo was verified using ApoE-/- mice were given tail-vein injection of endothelial-specific overexpressed and knock-down MEST adeno-associated virus (AAV). RESULTS: These findings confirmed that MEST is up-regulated in low-shear-stress-induced EndMT and atherosclerosis. In vivo experiments showed that MEST gene overexpression significantly promoted EndMT and aggravated the development of atherosclerotic plaques and MEST gene knockdown significantly inhibited EndMT and delayed the process of atherosclerosis. In vitro, H2S inhibits the expression of MEST and EndMT induced by low shear stress and inhibits EndMT induced by MEST overexpression. Knockdown of NFIL3 inhibit the up regulation of MEST and EndMT induced by low shear stress in HUVECs. CHIP-qPCR assay and Luciferase Reporter assay confirmed that NFIL3 binds to MEST DNA, increases its transcription and H2S inhibits the binding of NFIL3 and MEST DNA, weakening NFIL3's transcriptional promotion of MEST. Mechanistically, H2S increased the sulfhydrylation level of NFIL3, an important upstream transcription factors of MEST. In part, transcription factor NFIL3 restrain its binding to MEST DNA by sulfhydration. CONCLUSIONS: H2S negatively regulate the expression of MEST by sulfhydrylation of NFIL3, thereby inhibiting low-shear-stress-induced EndMT and atherosclerosis.


Assuntos
Aterosclerose , Sulfeto de Hidrogênio , Camundongos , Animais , Humanos , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Transição Endotélio-Mesênquima , Aterosclerose/genética , Aterosclerose/metabolismo , Endotélio/metabolismo , DNA/metabolismo , Apolipoproteínas E/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Transição Epitelial-Mesenquimal
2.
Exp Cell Res ; 429(2): 113666, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37271250

RESUMO

TM6SF2, predominantly expressed in the liver and intestine, is closely associated with lipid metabolism. We have demonstrated the presence of TM6SF2 in VSMCs within human atherosclerotic plaques. Subsequent functional studies were conducted to investigate its role in lipid uptake and accumulation in human vascular smooth muscle cells (HAVSMCs) using siRNA knockdown and overexpression techniques. Our results showed that TM6SF2 reduced lipid accumulation in oxLDL-stimulated VSMCs, likely through the regulation of lectin-like oxLDL receptor 1 (LOX-1) and scavenger receptor cluster of differentiation 36 (CD36) expression. We concluded that TM6SF2 plays a role in HAVSMC lipid metabolism with opposing effects on cellular lipid droplet content by downregulation of LOX-1 and CD36 expression.


Assuntos
Músculo Liso Vascular , Receptores Depuradores Classe E , Humanos , Músculo Liso Vascular/metabolismo , Receptores Depuradores Classe E/genética , Lipoproteínas LDL/farmacologia , Lipoproteínas LDL/metabolismo , Miócitos de Músculo Liso/metabolismo , Regulação para Baixo , Fígado/metabolismo , Proteínas de Membrana/metabolismo
3.
Reprod Biol Endocrinol ; 20(1): 45, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35255928

RESUMO

Diabetes mellitus (DM), a high incidence metabolic disease, is related to the impairment of male spermatogenic function. Spermidine (SPM), one of the biogenic amines, was identified from human seminal plasma and believed to have multiple pharmacological functions. However, there exists little evidence that reported SPM's effects on moderating diabetic male spermatogenic function. Thus, the objective of this study was to investigate the SPM's protective effects on testicular spermatogenic function in streptozotocin (STZ)-induced type 1 diabetic mice. Therefore, 40 mature male C57BL/6 J mice were divided into four main groups: the control group (n = 10), the diabetic group (n = 10), the 2.5 mg/kg SPM-treated diabetic group (n = 10) and the 5 mg/kg SPM-treated diabetic group (n = 10), which was given intraperitoneally for 8 weeks. The type 1 diabetic mice model was established by a single intraperitoneal injection of STZ 120 mg/kg. The results showed that, compare to the control group, the body and testis weight, as well the number of sperm were decreased, while the rate of sperm malformation was significantly increased in STZ-induced diabetic mice. Then the testicular morphology was observed, which showed that seminiferous tubule of testis were arranged in mess, the area and diameter of which was decreased, along with downregulated anti-apoptotic factor (Bcl-2) expression, and upregulated pro-apoptotic factor (Bax) expression in the testes. Furthermore, testicular genetic expression levels of Sertoli cells (SCs) markers (WT1, GATA4 and Vimentin) detected that the pathological changes aggravated observably, such as the severity of tubule degeneration increased. Compared to the saline-treated DM mice, SPM treatment markedly improved testicular function, with an increment in the body and testis weight as well as sperm count. Pro-apoptotic factor (Bax) was down-regulated expression with the up-regulated expression of Bcl-2 and suppression of apoptosis in the testes. What's more, expression of WT1, GATA4, Vimentin and the expressions of glycolytic rate-limiting enzyme genes (HK2, PKM2, LDHA) in diabetic testes were also upregulated by SPM supplement. The evidence derived from this study indicated that the SMP's positive effect on moderating spermatogenic disorder in T1DM mice's testis. This positive effect is delivered via promoting spermatogenic cell proliferation and participating in the glycolytic pathway's activation.


Assuntos
Diabetes Mellitus Experimental , Glicólise/efeitos dos fármacos , Infertilidade Masculina , Espermatogênese/efeitos dos fármacos , Espermidina/farmacologia , Animais , Complicações do Diabetes/tratamento farmacológico , Complicações do Diabetes/metabolismo , Complicações do Diabetes/patologia , Complicações do Diabetes/fisiopatologia , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Infertilidade Masculina/tratamento farmacológico , Infertilidade Masculina/etiologia , Infertilidade Masculina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise do Sêmen , Espermatogênese/fisiologia , Espermidina/uso terapêutico , Estreptozocina , Testículo/efeitos dos fármacos , Testículo/metabolismo
4.
J Cell Physiol ; 234(3): 2345-2355, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30246446

RESUMO

Proprotein convertase subtilisin/kexin 9 (PCSK9) is the ninth member of the secretory serine protease family. It binds to low-density lipoprotein receptor (LDLR) for endocytosis and lysosome degradation in the liver, resulting in an increasing in circulating LDL-cholesterol (LDL-c) level. Since a PCSK9 induced increase in plasma LDL-c contributes to atherosclerosis, PCSK9 inhibition has become a new strategy in preventing and treating atherosclerosis. However, in addition to the effect of PCSK9 on elevating blood LDL-c levels, accumulating evidence shows that PCSK9 plays an important role in inflammation, likely representing another major mechanism for PCSK9 to promote atherosclerosis. In this review, we discuss the association of PCSK9 and inflammation, and highlight the specific effects of PCSK9 on different vascular cellular components involved in the atherosclerotic inflammation. We also discuss the clinical evidence for the association between PCSK9 and inflammation in atherosclerotic cardiovascular disease. A better understanding of the direct association of PCSK9 with atherosclerotic inflammation might help establish a new role for PCSK9 in vascular biology and identify a novel molecular mechanism for PCSK9 therapy.


Assuntos
Aterosclerose/genética , LDL-Colesterol/sangue , Inflamação/genética , Pró-Proteína Convertase 9/genética , Aterosclerose/sangue , Aterosclerose/patologia , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patologia , Endocitose/genética , Humanos , Inflamação/sangue , Inflamação/patologia , Lisossomos/genética , Lisossomos/metabolismo , Receptores de LDL/genética
5.
Biochem Biophys Res Commun ; 516(3): 653-660, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31242971

RESUMO

Atrial fibrillation (AF) is associated with metabolic stress and induces myocardial fibrosis reconstruction by increasing glycolysis. One goal in the treatment of paroxysmal AF (p-AF) is to improve myocardial fibrosis reconstruction and myocardial metabolic stress caused by the Warburg effect. Adopted male canine that rapid right atrial pacing (RAP) for 6 days to establish a p-AF model. The canines were pre-treated with phenylephrine (PE) or dichloroacetic acid (DCA) before exposure to p-AF or non-p-AF. P-wave duration (Pmax), minimum P-wave duration (Pmin), P wave dispersion (PWD), atrial effective refractory period (AERP) and AERP dispersion (AERPd) were measured in canine atrial cardiomyocytes. Pyruvate dehydrogenase kinase-1 (PDK-1), PDK-4, lactate dehydrogenase A (LDHA), pyruvate dehydrogenase (PDH), citrate synthase (CS), isocitrate dehydrogenase (IDH), and matrix metalloproteinase 9 (MMP-9) were evaluated by western blotting and reverse transcription polymerase chain reaction (RT-PCR), content of adenosine monophosphate (AMP), adenosine triphosphate (ATP), lactic acid and glycogen, and activity of LDHA, PDK-1 and PDK-4 were evaluated by enzyme-linked immunosorbent assay (ELISA), myocardial tissue glycogen content was evaluated by PAS, myocardial fibrosis remodeling was evaluated by hematoxylin and eosin (H&E) and Masson staining. Our findings demonstrated that p-AF increases the Warburg effect-related metabolic stress and myocardial fibrosis remodeling by increasing the expression and activity of PDK-1, PDK-4, and LDHA, content of AMP and lactic acid, and the ratio of AMP/ATP and decreasing the expression of PDH, CS, and IDH, and glycogen content. In addition, p-AF can induce cardiomyocyte fibrosis remodeling and increase MMP-9 expression, and p-AF also increases atrial intracardiac waveform activity by prolonging Pmax, Pmin, PWD, and AERPd and shortening AERP. PDK isoforms agonists (PE) produce a similar p-AF pathological effect and can produce synergistic effects with p-AF, further increasing Warburg effect-related metabolic stress, myocardial fibrosis remodeling, and atrial intracardiac waveform activity. In contrast, the use of PDK-specific inhibitors (DCA) completely reverses these pathophysiological changes induced by p-AF. We demonstrate that p-AF can induce the Warburg effect in canine atrial cardiomyocytes and significantly improve p-AF-induced metabolic stress, myocardial fibrosis remodeling, and atrial intracardiac waveform activity by inhibiting the Warburg effect.


Assuntos
Fibrilação Atrial/metabolismo , Glicólise/fisiologia , Sistema de Condução Cardíaco/metabolismo , Miocárdio/metabolismo , Estresse Fisiológico/fisiologia , Animais , Fibrilação Atrial/genética , Fibrilação Atrial/fisiopatologia , Estimulação Cardíaca Artificial , Ácido Dicloroacético/farmacologia , Cães , Fibrose , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glicogênio/metabolismo , Glicólise/efeitos dos fármacos , Glicólise/genética , Sistema de Condução Cardíaco/efeitos dos fármacos , Sistema de Condução Cardíaco/fisiopatologia , Lactato Desidrogenase 5/genética , Lactato Desidrogenase 5/metabolismo , Masculino , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Fenilefrina/farmacologia , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo
6.
Acta Pharmacol Sin ; 38(3): 301-311, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28112180

RESUMO

Proprotein convertase subtilisin/kexin type 9 (PCSK9), also known as neural apoptosis regulated convertase (NARC1), is a key modulator of cholesterol metabolism. PCSK9 increases the serum concentration of low-density lipoprotein cholesterol by escorting low-density lipoprotein receptors (LDLRs) from the membrane of hepatic cells into lysosomes, where the LDLRs are degraded. Owing to the importance of PCSK9 in lipid metabolism, considerable effort has been made over the past decade in developing drugs targeting PCSK9 to lower serum lipid levels. Nevertheless, some problems and challenges remain. In this review we first describes the structure and function of PCSK9 and its gene polymorphisms. We then discuss the various designs of pharmacological targets of PCSK9, including those that block the binding of PCSK9 to hepatic LDLRs (mimetic peptides, adnectins, and monoclonal antibodies), inhibit PCSK9 expression (the clustered regularly interspaced short palindromic repeats/Cas9 platform, small molecules, antisense oligonucleotides, and small interfering RNAs), and interfere with PCSK9 secretion. Finally, this review highlights future challenges in this field, including safety concerns associated with PCSK9 monoclonal antibodies, the limited utility of PCSK9 inhibitors in the central nervous system, and the cost-effectiveness of PCSK9 inhibitors.


Assuntos
Hipolipemiantes/farmacologia , Inibidores de PCSK9 , Inibidores de Serina Proteinase/farmacologia , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados/farmacologia , Anticolesterolemiantes/farmacologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Endonucleases/genética , Humanos , Terapia de Alvo Molecular , Oligonucleotídeos Antissenso/farmacologia , Polimorfismo Genético , Pró-Proteína Convertase 9/química , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/imunologia , RNA Interferente Pequeno/farmacologia , Receptores de LDL/genética , Receptores de LDL/metabolismo
7.
Mol Cell Biochem ; 414(1-2): 57-66, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26899709

RESUMO

Cardiovascular disease is a growing major global public health problem. Oxidative stress is regarded as one of the key regulators of pathological physiology, which eventually leads to cardiovascular disease. However, mechanisms by which FGF-2 rescues cells from oxidative stress damage in cardiovascular disease is not fully elucidated. Herein this study was designed to investigate the protective effects of FGF-2 in H2O2-induced apoptosis of H9c2 cardiomyocytes, as well as the possible signaling pathway involved. Apoptosis of H9c2 cardiomyocytes was induced by H2O2 and assessed using methyl thiazolyl tetrazolium assay, Hoechst, and TUNEL staining. Cells were pretreated with PI3K/Akt inhibitor LY294002 to investigate the possible PI3K/Akt pathways involved in the protection of FGF-2. The levels of p-Akt, p-FoxO3a, and Bim were detected by immunoblotting. Stimulation with H2O2 decreased the phosphorylation of Akt and FoxO3a, and induced nuclear localization of FoxO3a and apoptosis of H9c2 cells. These effects of H2O2 were abrogated by pretreatment with FGF-2. Furthermore, the protective effects of FGF-2 were abolished by PI3K/Akt inhibitor LY294002. In conclusion, our data suggest that FGF-2 protects against H2O2-induced apoptosis of H9c2 cardiomyocytes via activation of the PI3K/Akt/FoxO3a pathway.


Assuntos
Apoptose/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/fisiologia , Proteína Forkhead Box O3/metabolismo , Peróxido de Hidrogênio/toxicidade , Miócitos Cardíacos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Proteína 11 Semelhante a Bcl-2/metabolismo , Linhagem Celular , Fosforilação , Transporte Proteico , Ratos
8.
Mol Cell Biochem ; 359(1-2): 347-58, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21847580

RESUMO

This paper investigated the effects of ox-LDL on PCSK9, and the molecular mechanisms of PCSK9 siRNA-inhibited apoptosis induced by ox-LDL in human umbilical vein endothelial cells (HUVECs), to clarify the role of PCSK9 in atherosclerogenesis. HUVECs were incubated with ox-LDL for 24 h. The apoptosis was observed by Hoechst 33258 staining. The expression of PCSK9, LOX-1 mRNAs and proteins was detected by RT-PCR, western blot, respectively. The PCSK9 siRNAs labeled with fluorescence were transfected into HUVECs by Lipofectamine 2000. After transfection for 24 h, cells were treated with ox-LDL for 24 h, HUVECs apoptosis transfected siRNA was detected by Hoechst 33258 staining and flow cytometer. The expression of Bcl-2, Bax, caspase3, 8, 9 was detected by western blot. The activity of caspase3, 9 was detected by kits. Our results showed that apoptosis of HUVECs and the expressions of PCSK9 and LOX-1 were upregulated secondary to induction by ox-LDL in a concentration-dependent manner. However, ox-LDL-induced HUVEC apoptosis and PCSK9 expression, but not LOX-1 expression, were significantly reduced by PCSK9 siRNA. These results demonstrate a linkage between HUVEC apoptosis and PCSK9 expression. Furthermore, we detected the possible pathway involved in apoptotic regulation by PCSK9 siRNA; our results showed that the expression of Bcl-2 decreased, whereas that of Bax increased. In addition, ox-LDL enhanced the activity of caspase9 and then caspase3. Pretreatment of HUVECs with PCSK9 siRNA blocked these effects of ox-LDL. These findings suggest that ox-LDL-induced HUVECs apoptosis could be inhibited by PCSK9 siRNA, in which Bcl/Bax-caspase9-caspase3 pathway maybe was involved through reducing the Bcl-2/Bax ratio and inhibited the activation of both caspase9 and 3.


Assuntos
Proteínas Reguladoras de Apoptose/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/citologia , Lipoproteínas LDL/fisiologia , Pró-Proteína Convertases/genética , RNA Interferente Pequeno/farmacologia , Serina Endopeptidases/genética , Transdução de Sinais , Proteínas Reguladoras de Apoptose/fisiologia , Caspase 3 , Caspase 9 , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Pró-Proteína Convertase 9 , Pró-Proteína Convertases/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2 , Proteína X Associada a bcl-2
9.
Eur J Pharmacol ; 896: 173916, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33529724

RESUMO

Cardiovascular diseases are the leading cause of death and morbidity worldwide. Atherosclerotic cardiovascular disease (ASCVD) is affected by both environmental and genetic factors. Microenvironmental disorders of the human gut flora are associated with a variety of health problems, not only gastrointestinal diseases, such as inflammatory bowel disease, but also extralintestinal organs. Hydrogen sulfide (H2S) is the third gas signaling molecule other than nitric oxide and carbon monoxide. In the cardiovascular system, H2S plays important roles in the regulation of blood pressure, angiogenesis, smooth muscle cell proliferation and apoptosis, anti-oxidative stress, cardiac functions. This review is aiming to explore the potential role of gut microbiota in the development of atherosclerosis through hydrogen sulfide production as a novel therapeutic direction for atherosclerosis.


Assuntos
Artérias/metabolismo , Aterosclerose/microbiologia , Bactérias/metabolismo , Gasotransmissores/metabolismo , Microbioma Gastrointestinal , Sulfeto de Hidrogênio/metabolismo , Intestinos/microbiologia , Animais , Artérias/patologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/terapia , Humanos , Placa Aterosclerótica , Transdução de Sinais
10.
Mol Med Rep ; 23(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33760156

RESUMO

Hydrogen sulfide (H2S) exerts an anti­atherosclerotic effect and decreases foam cell formation. Lipoprotein­associated phospholipase A2 (Lp­PLA2) is a key factor involved in foam cell formation. However, the association between H2S and Lp­PLA2 expression levels with respect to foam cell formation has not yet been elucidated. The present study investigated whether H2S can affect foam cell formation and potential signalling pathways via regulation of the expression and activity of Lp­PLA2. Using human monocytic THP­1 cells as a model system, it was observed that oxidized low­density lipoprotein (ox­LDL) not only upregulates the expression level and activity of Lp­PLA2, it also downregulates the expression level and activity of Cystathionine γ lyase. Exogenous supplementation of H2S decreased the expression and activity of Lp­PLA2 induced by ox­LDL. Moreover, ox­LDL induced the expression level and activity of Lp­PLA2 via activation of the p38MAPK signalling pathway. H2S blocked the expression levels and activity of Lp­PLA2 induced by ox­LDL via inhibition of the p38MAPK signalling pathway. Furthermore, H2S inhibited Lp­PLA2 activity by blocking the p38MAPK signaling pathway and significantly decreased lipid accumulation in ox­LDL­induced macrophages, as detected by Oil Red O staining. The results of the present study indicated that H2S inhibited ox­LDL­induced Lp­PLA2 expression levels and activity by blocking the p38MAPK signalling pathway, thereby improving foam cell formation. These findings may provide novel insights into the role of H2S intervention in the progression of atherosclerosis.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/genética , Cistationina gama-Liase/genética , Sulfeto de Hidrogênio/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Células Espumosas/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Sulfeto de Hidrogênio/metabolismo , Lipoproteínas LDL/genética , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/farmacologia , Macrófagos/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Transdução de Sinais/efeitos dos fármacos
11.
Curr Med Chem ; 28(1): 152-168, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32141415

RESUMO

Atherosclerosis is a chronic inflammatory vascular disease. Atherosclerotic cardiovascular disease is the main cause of death in both developed and developing countries. Many pathophysiological factors, including abnormal cholesterol metabolism, vascular inflammatory response, endothelial dysfunction and vascular smooth muscle cell proliferation and apoptosis, contribute to the development of atherosclerosis and the molecular mechanisms underlying the development of atherosclerosis are not fully understood. Ubiquitination is a multistep post-translational protein modification that participates in many important cellular processes. Emerging evidence suggests that ubiquitination plays important roles in the pathogenesis of atherosclerosis in many ways, including regulation of vascular inflammation, endothelial cell and vascular smooth muscle cell function, lipid metabolism and atherosclerotic plaque stability. This review summarizes important contributions of various E3 ligases to the development of atherosclerosis. Targeting ubiquitin E3 ligases may provide a novel strategy for the prevention of the progression of atherosclerosis.


Assuntos
Aterosclerose/enzimologia , Ubiquitina-Proteína Ligases , Ubiquitinação , Células Endoteliais/metabolismo , Humanos , Inflamação , Metabolismo dos Lipídeos , Miócitos de Músculo Liso/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
12.
Curr Med Chem ; 28(36): 7446-7460, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34060998

RESUMO

Proprotein convertase subtilisin/Kexin type 9 (PCSK9) is a secretory serine protease that plays multiple biological functions in the regulation of physiological and pathological processes. PCSK9 inhibitors decrease the circulating LDL-cholesterol level with well-known preventive and therapeutic effects on atherosclerosis (AS). Still, increasing evidence shows that the direct impact of PCSK9 on the vascular wall also plays an important role in atherosclerotic progression. Compared with other vascular cells, a large proportion of PCSK9 is originated from vascular smooth muscle cells (VSMC). Therefore, defining the effect of VSMC-derived PCSK9 on response changes, such as phenotypic switch, apoptosis, autophagy, inflammation, foam cell formation, and calcification of VSMC, helps us better understand the "pleiotropic" effects of VSMC on the atherosclerotic process. In addition, our understanding of the mechanisms of PCSK9 controlling VSMC functions in vivo is far from enough. This review aims to holistically evaluate and analyze the current state of our knowledge regarding PCSK9 actions affecting VSMC functions and its mechanism in atherosclerotic lesion development. A mechanistic understanding of PCSK9 effects on VSMC will further underpin the success of a new therapeutic strategy targeting AS.


Assuntos
Aterosclerose , Pró-Proteína Convertase 9 , Aterosclerose/tratamento farmacológico , LDL-Colesterol , Humanos , Músculo Liso Vascular
13.
Front Pharmacol ; 12: 690371, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34950023

RESUMO

Atrial fibrosis is the basis for the occurrence and development of atrial fibrillation (AF) and is closely related to the Warburg effect, endoplasmic reticulum stress (ERS) and mitochondrion dysfunctions-induced cardiomyocyte apoptosis. Hydrogen sulfide (H2S) is a gaseous signalling molecule with cardioprotective, anti-myocardial fibrosis and improved energy metabolism effects. Nevertheless, the specific mechanism by which H2S improves the progression of atrial fibrosis to AF remains unclear. A case-control study of patients with and without AF was designed to assess changes in H2S, the Warburg effect, and ERS in AF. The results showed that AF can significantly reduce cystathionine-γ-lyase (CSE) and 3-mercaptopyruvate thiotransferase (3-MST) expression and the H2S level, induce cystathionine-ß-synthase (CBS) expression; increase the Warburg effect, ERS and atrial fibrosis; and promote left atrial dysfunction. In addition, AngII-treated SD rats had an increased Warburg effect and ERS levels and enhanced atrial fibrosis progression to AF compared to wild-type SD rats, and these conditions were reversed by sodium hydrosulfide (NaHS), dichloroacetic acid (DCA) or 4-phenylbutyric acid (4-PBA) supplementation. Finally, low CSE levels in AngII-induced HL-1 cells were concentration- and time-dependent and associated with mitochondrial dysfunction, apoptosis, the Warburg effect and ERS, and these effects were reversed by NaHS, DCA or 4-PBA supplementation. Our research indicates that H2S can regulate the AngII-induced Warburg effect and ERS and might be a potential therapeutic drug to inhibit atrial fibrosis progression to AF.

14.
Clin Chim Acta ; 506: 191-195, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32220421

RESUMO

Oral infections are common among individuals of all ages and can activate local and systemic inflammation. The inflammatory response plays an important role in atherosclerosis. An increasing number of studies have reported an association between oral pathogen infection and atherosclerotic coronary heart disease. For instance, epidemiological studies support the positive correlation between oral infections and atherosclerosis. The presence of oral pathogens in human atherosclerotic plaques has been detected by multiple methods, and oral infections promote atherosclerosis in animal experiments. Various mechanisms are involved in oral infections, thereby promoting atherosclerosis. First, oral infections can trigger the local and systemic inflammatory response, causing vascular endothelial damage. Oral-derived pathogens that enter atherosclerotic plaque can activate macrophages and cause an intra-plaque inflammatory response. Second, oral infections can promote intra-plaque macrophage cholesterol accumulation and foam cell formation. Third, oral infections can regulate plasma lipid levels, thereby increasing atherogenic lipid low-density lipoprotein and triglyceride levels. Although atherosclerosis caused by oral infections is currently studied, the precise mechanism remains to be further explored. The rise of gut microbiota research also makes the relationship between oral microbiota and disease, especially the relationship with coronary heart disease, worthy of attention and in-depth research.


Assuntos
Aterosclerose/microbiologia , Microbiota , Boca/microbiologia , Animais , Humanos
15.
Clin Chim Acta ; 501: 142-146, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31730809

RESUMO

Atherosclerosis is a chronic inflammatory response that increases the risk of cardiovascular diseases. An in-depth study of the pathogenesis of atherosclerosis is critical for the treatment of atherosclerotic cardiovascular disease. The development of atherosclerosis involves many cells, such as endothelial cells, vascular smooth muscle cells, macrophages, and others. The considerable effects of macrophages in atherosclerosis are inextricably linked to macrophage polarization and the resulting phenotype. Moreover, the significant impact of macrophages on atherosclerosis depend not only on the function of the different macrophage phenotypes but also on the relative ratio of different phenotypes in the plaque. Research on atherosclerosis therapy indicates that the reduced plaque size and enhanced stability are partly due to modulating macrophage polarization. Therefore, regulating macrophage polarization and changing the proportion of macrophage phenotypes in plaques is a new therapeutic approach for atherosclerosis. This review provides a new perspective for atherosclerosis therapy by summarizing the relationship between macrophage polarization and atherosclerosis, as well as treatment targeting macrophage polarization.


Assuntos
Aterosclerose/metabolismo , Macrófagos/metabolismo , Animais , Humanos , Ativação de Macrófagos
16.
Can J Physiol Pharmacol ; 87(10): 798-804, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19898562

RESUMO

Fibroblast growth factor 2 (FGF-2) is a multifunctional protein translated as high and low molecular weight isoforms (hi- and lo-FGF-2, respectively). Although the postconditioning cardioprotective effect of lo-FGF-2 (18 kDa) has been documented, hi-FGF-2 is less well studied. We used an isolated perfused rat heart model of ischemia-reperfusion to study the effects of postischemic (during reperfusion) administration of hi-FGF-2 on recovery of contractile function and tissue salvage, as indicated by decreased cytosolic cytochrome c levels. Compared with the vehicle-treated group, hi-FGF-2-treated hearts had significantly improved recovery of systolic pressure, developed pressure, rates of contraction and relaxation, and coronary flow, as well as decreased relative levels of cytosolic cytochrome c. The effects of hi-FGF-2 on functional recovery and cytosolic cytochrome c were indistinguishable from those induced by lo-FGF-2. Both hi- and lo-FGF-2 upregulated relative levels of phosphorylated (activated) Akt and p70 S6 kinase, and they both promoted translocation of alpha, epsilon, and zeta isoforms of protein kinase C (PKC) to the particulate fraction of reperfused hearts. The magnitude of the effect on PKCzeta and p70 S6 kinases, however, was significantly more potent in the hi-FGF-2 than in the lo-FGF-2 group. We conclude that acute postischemic cardioprotection by hi- or lo-FGF-2 is isoform nonspecific and likely to be mediated by PKC and Akt. Nevertheless, isoform-specific functions are suggested by the augmented sensitivity of p70 S6 and PKCzeta to hi-FGF-2.


Assuntos
Cardiotônicos , Fator 2 de Crescimento de Fibroblastos/farmacologia , Cardiopatias/prevenção & controle , Precondicionamento Isquêmico Miocárdico , Proteína Oncogênica v-akt/metabolismo , Proteína Quinase C/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Animais , Western Blotting , Ativação Enzimática/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/química , Técnicas In Vitro , Isoenzimas/metabolismo , Masculino , Peso Molecular , Traumatismo por Reperfusão Miocárdica/patologia , Ratos , Ratos Sprague-Dawley , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo
17.
Chin J Nat Med ; 17(1): 50-58, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30704624

RESUMO

Atherosclerotic cardiovascular disease (ASCVD) is the deadliest disease in the world, with endothelial injury occurring throughout the course of the disease. Therefore, improvement in endothelial function is of essential importance in the prevention of ASCVD. Red yeast rice (RYR), a healthy traditional Chinese food, has a lipid modulation function and also plays a vital role in the improvement of endothelial reactivity and cardiovascular protection; thus, it is significant in the prevention and treatment of ASCVD. This article reviews the molecular mechanisms of RYR and its related products in the improvement of endothelial function in terms of endothelial reactivity, anti-apoptosis of endothelial progenitor cells, oxidative stress alleviation and anti-inflammation.


Assuntos
Aterosclerose/prevenção & controle , Produtos Biológicos/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Endotélio Vascular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Aterosclerose/patologia , Aterosclerose/fisiopatologia , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/fisiopatologia , Doenças Cardiovasculares/prevenção & controle , Medicamentos de Ervas Chinesas/química , Endotélio Vascular/citologia , Endotélio Vascular/fisiologia , Humanos , Inflamação/prevenção & controle , Metabolismo dos Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
18.
Clin Chim Acta ; 495: 358-364, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31075236

RESUMO

Proprotein convertase subtilisin kexin 9 (PCSK9) regulates lipid metabolism by degrading low-density lipoprotein receptor on the surface of hepatocytes. PCSK9-mediated lipid degradation is associated with lipophagy. Lipophagy is a process by which autophagosomes selectively sequester lipid-droplet-stored lipids and are delivered to lysosomes for degradation. Lipophagy was first discovered in hepatocytes, and its occurrence provides important fundamental insights into how lipid metabolism regulates cellular physiology and pathophysiology. Furthermore, PCSK9 may regulate lipid levels by affecting lipophagy. This review will discuss recent advances by which PCSK9 mediates lipid degradation via the lipophagy pathway and present lipophagy as a potential therapeutic target for atherosclerosis.


Assuntos
Aterosclerose/metabolismo , Metabolismo dos Lipídeos , Pró-Proteína Convertase 9/fisiologia , Animais , Autofagia , Humanos
19.
Int J Mol Med ; 43(5): 2055-2063, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30864739

RESUMO

Hydrogen sulfide (H2S) is an endogenous gaseous signaling molecule that plays important roles in the cardiovascular system. In our previous studies, we demonstrated that H2S regulates lipid metabolism. In the present study, we aimed to explore the mechanisms through which H2S regulates lipid metabolism in HepG2 cells in vitro. Treatment of the HepG2 cells with H2S inhibited the expression of proprotein convertase subtilisin/kexin type 9 (PCSK9) and increased the level of low­density lipoprotein receptor (LDLR) in a time­ and dose­dependent manner. The knockdown of PCSK9 by siRNA effectively increased the levels of LDLR and 1,1'­dioctadecyl­3,3,3',3'­tetramethyl­indocarbocyanine perchlorate­labeled LDL (DiI­LDL) uptake in the H2S­treated HepG2 cells. Furthermore, the phosphoinositide 3­kinase (PI3K)/protein kinase B (Akt)­sterol regulatory element binding proteins 2 (SREBP­2) signaling pathway was confirmed to be involved in H2S­regulated PCSK9 expression. Notably, the HepG2 cells were incubated with 30% serum and DiI­LDL for 24 h, and the results revealed that H2S increased lipid uptake, but caused no increase in lipid accumulation. On the whole, the findings of this study demonstrate that H2S is involved in the regulation of lipid metabolism in HepG2 cells through the regulation of the expression of PCSK9 via the PI3K/Akt­SREBP­2 signaling pathway. To the very best of our knowledge, this study is the first to report that H2S can regulate the expression of PCSK9.


Assuntos
Sulfeto de Hidrogênio/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Inibidores de PCSK9 , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Células Hep G2 , Humanos , Modelos Biológicos , Pró-Proteína Convertase 9/metabolismo , Receptores de LDL/metabolismo , Regulação para Cima/efeitos dos fármacos
20.
Int J Mol Med ; 43(3): 1321-1330, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30664197

RESUMO

Fibroblast growth factor (FGF)­21, a member of the family of FGFs, exhibits protective effects against myocardial ischemia and ischemia/reperfusion injury; it is also an enhancer of autophagy. However, the mechanisms underlying the protective role of FGF­21 against cardiomyocyte hypoxia/reoxygenation (H/R) injury remain unclear. The present study aimed to investigate the effect of FGF­21 on H9c2 cardiomyocyte injury induced by H/R and the mechanism associated with changes in autophagy. Cultured H9c2 cardiomyocytes subjected to hypoxia were treated with a vehicle or FGF­21 during reoxygenation. The viability of H9c2 rat cardiomyocytes was measured using Cell Counting Kit­8 and trypan blue exclusion assays. The contents of creatine kinase (CK) and creatine kinase isoenzymes (CK­MB), cardiac troponin I (cTnT), cardiac troponin T (cTnI) and lactate dehydrogenase (LDH) in culture medium were detected with a CK, CK­MB, cTnT, cTnI and LDH assay kits. The protein levels were examined by western blot analysis. Autophagic flux was detected by Ad­mCherry­GFP­LC3B autophagy fluorescent adenovirus reagent. The results indicated that FGF­21 alleviated H/R­induced H9c2 myocardial cell injury and enhanced autophagic flux during H/R, and that this effect was antagonized by co­treatment with 3­methyladenine, an autophagy inhibitor. Furthermore, FGF­21 increased the expression levels of Beclin­1 and Vps34 proteins, but not of mechanistic target of rapamycin. These data indicate that FGF­21 treatment limited H/R injury in H9c2 cardiomyocytes by promoting autophagic flux through upregulation of the expression levels of Beclin­1 and Vps34 proteins.


Assuntos
Autofagia , Fatores de Crescimento de Fibroblastos/metabolismo , Hipóxia/metabolismo , Miócitos Cardíacos/metabolismo , Oxigênio/metabolismo , Animais , Biomarcadores , Linhagem Celular , Sobrevivência Celular , Citoproteção , Fatores de Crescimento de Fibroblastos/farmacologia , Genes Reporter , Traumatismo por Reperfusão Miocárdica/etiologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Ratos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA