Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Soft Matter ; 20(8): 1689-1693, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38323528

RESUMO

We demonstrate a system for performing logical operations (OR, AND, and NOT gates) at the air-water interface based on Marangoni optical trapping and repulsion between photothermal particles. We identify a critical separation distance at which the trapped particle assemblies become unstable, providing insight into the potential for scaling to larger arrays of logic elements.

2.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33903243

RESUMO

Cyclic actuation is critical for driving motion and transport in living systems, ranging from oscillatory motion of bacterial flagella to the rhythmic gait of terrestrial animals. These processes often rely on dynamic and responsive networks of oscillators-a regulatory control system that is challenging to replicate in synthetic active matter. Here, we describe a versatile platform of light-driven active particles with interaction geometries that can be reconfigured on demand, enabling the construction of oscillator and spinner networks. We employ optically induced Marangoni trapping of particles confined to an air-water interface and subjected to patterned illumination. Thermal interactions among multiple particles give rise to complex coupled oscillatory and rotational motions, thus opening frontiers in the design of reconfigurable, multiparticle networks exhibiting collective behavior.


Assuntos
Bactérias/efeitos da radiação , Fenômenos Fisiológicos Bacterianos/efeitos da radiação , Flagelos/fisiologia , Movimento (Física) , Flagelos/efeitos da radiação , Luz , Pinças Ópticas , Água/química
3.
J Phys Chem B ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39047259

RESUMO

We employ photothermally driven self-assembly of colloidal particles to design microscopic structures with programmable size and tunable order. The experimental system is based on a binary mixture of "plasmonic heater" gold nanoparticles and "assembly building block" microparticles. Photothermal heating of the gold nanoparticles under visible light causes a natural convection flow that efficiently assembles the microscale building block particles (diameter 1-10 µm) into a monolayer. We identify the onset of active Brownian motion of colloidal particles under this convective flow by varying the conditions of light intensity, gold nanoparticle concentration, and sample height. We realize a crowded assembly of microparticles around the center of illumination and show that the size of the particle crowd can be programmed using patterned light illumination. In a binary mixture of gold nanoparticles and polystyrene microparticles, we demonstrate the formation of rapid and large-scale crystalline monolayers, covering an area of 0.88 mm2 within 10 min. We find that the structural order of the assembly can be tuned by varying the surface charge of the nanoparticles and the size of the microparticles, giving rise to the formation of different phases-colloidal crystals, crowds, and gels. Using Monte Carlo simulations, we explain how the phases emerge from the interplay between hydrodynamic and electrostatic interactions, as well as the assembly kinetics. Our study demonstrates the promise of self-assembly with programmable shapes and structural order under nonequilibrium conditions using an accessible setup comprising only binary mixtures and LED light.

4.
Adv Mater ; 34(3): e2105758, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34741359

RESUMO

Demands for next-generation soft and responsive materials have sparked recent interest in the development of shape-changing particles and particle assemblies. Over the last two decades, a variety of mechanisms that drive shape change have been explored and integrated into particulate systems. Through a combination of top-down fabrication and bottom-up synthesis techniques, shape-morphing capabilities extend from the microscale to the nanoscale. Consequently, shape-morphing particles are rapidly emerging in a variety of contexts, including photonics, microfluidics, microrobotics, and biomedicine. Herein, the key mechanisms and materials that facilitate shape changes of microscale and nanoscale particles are discussed. Recent progress in the applications made possible by these particles is summarized, and perspectives on their promise and key open challenges in the field are discussed.

5.
Mater Horiz ; 8(2): 565-570, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34821272

RESUMO

We describe a new approach to making plasmonic metamolecules with well-controlled resonances at optical wavelengths. Metamolecules are highly symmetric, subwavelength-scale clusters of metal and dielectric. They are of interest for metafluids, isotropic optical materials with applications in imaging and optical communications. For such applications, the morphology must be precisely controlled: the optical response is sensitive to nanometer-scale variations in the thickness of metal coatings and the distances between metal surfaces. To achieve this precision, we use a multi-step colloidal synthesis approach. Starting from highly monodisperse silica seeds, we grow octahedral clusters of polystyrene spheres using seeded-growth emulsion polymerization. We then overgrow the silica and remove the polystyrene to create a dimpled template. Finally, we attach six silica satellites to the template and coat them with gold. Using single-cluster spectroscopy, we show that the plasmonic resonances are reproducible from cluster to cluster. By comparing the spectra to theory, we show that the multi-step synthesis approach can control the distances between metallic surfaces to nanometer-scale precision. More broadly, our approach shows how metamolecules can be produced in bulk by combining different, high-yield colloidal synthesis steps, analogous to how small molecules are produced by multi-step chemical reactions.

6.
Sci Rep ; 3: 3341, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24281391

RESUMO

Molecular dissociation under incident light whose energy is lower than the bond dissociation energy has been achieved through multi step excitation using a coupled state of a photon, electron, and multimode-coherent phonon as known as the dressed photon phonon (DPP). Here, we have investigated the effects of the DPP on CO2, a very stable molecule with high absorption and dissociation energies, by introducing ZnO nanorods to generate the DPP. Then, the changes in CO2 absorption bands were evaluated using light with a wavelength longer than the absorption wavelength, which confirmed the DPP-assisted energy up-conversion. To evaluate the specific CO2 modes related to this process, we measured the CO2 vibration-rotation spectra in the near-infrared region. Detailed analysis of the 3ν3 vibrational band when a DPP source is present showed that DPP causes a significant increase in the intensity of certain absorption bands, especially those that require higher energies to activate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA