Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(18)2022 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-36142465

RESUMO

Presenilin-1 (PSEN1) is a crucial subunit within the γ-secretase complex and regulates ß-amyloid (Aß) production. Accumulated evidence indicates that n-butylidenephthalide (BP) acts effectively to reduce Aß levels in neuronal cells that are derived from trisomy 21 (Ts21) induced pluripotent stem cells (iPSCs). However, the mechanism underlying this effect remains unclear. This article aims to investigate the possible mechanisms through which BP ameliorates the development of Alzheimer's disease (AD) and verify the effectiveness of BP through animal experiments. Results from RNA microarray analysis showed that BP treatment in Ts21 iPSC-derived neuronal cells reduced long noncoding RNA (lncRNA) CYP3A43-2 levels and increased microRNA (miR)-29b-2-5p levels. Bioinformatics tool prediction analysis, biotin-labeled miR-29b-2-5p pull-down assay, and dual-luciferase reporter assay confirmed a direct negative regulatory effect for miRNA29b-2-5p on lnc-RNA-CYP3A43-2 and PSEN1. Moreover, BP administration improved short-term memory and significantly reduced Aß accumulation in the hippocampus and cortex of 3xTg-AD mice but failed in miR-29b-2-5p mutant mice generated by CRISP/Cas9 technology. In addition, analysis of brain samples from patients with AD showed a decrease in microRNA-29b-2-5p expression in the frontal cortex region. Our results provide evidence that the LncCYP3A43-2/miR29-2-5p/PSEN1 network might be involved in the molecular mechanisms underlying BP-induced Aß reduction.


Assuntos
Doença de Alzheimer , MicroRNAs , RNA Longo não Codificante , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Biotina , Cognição , Camundongos , MicroRNAs/metabolismo , Placa Amiloide , Presenilina-1/genética , RNA Longo não Codificante/genética
2.
Pharmacol Res ; 159: 105010, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32544428

RESUMO

AMD3100 (plerixafor), a CXCR4 antagonist, has opened a variety of avenues for potential therapeutic approaches in different refractory diseases. The CXCL12/CXCR4 axis and its signaling pathways are involved in diverse disorders including HIV-1 infection, tumor development, non-Hodgkin lymphoma, multiple myeloma, WHIM Syndrome, and so on. The mechanisms of action of AMD3100 may relate to mobilizing hematopoietic stem cells, blocking infection of X4 HIV-1, increasing circulating neutrophils, lymphocytes and monocytes, reducing myeloid-derived suppressor cells, and enhancing cytotoxic T-cell infiltration in tumors. Here, we first revisit the pharmacological discovery of AMD3100. We then review monotherapy of AMD3100 and combination use of AMD3100 with other agents in various diseases. Among those, we highlight the perspective of AMD3100 as an immunomodulator to regulate immune responses particularly in the tumor microenvironment and synergize with other therapeutics. All the pre-clinical studies support the clinical testing of the monotherapy and combination therapies with AMD3100 and further development for use in humans.


Assuntos
Fármacos Anti-HIV/uso terapêutico , Antineoplásicos/uso terapêutico , Benzilaminas/uso terapêutico , Ciclamos/uso terapêutico , Infecções por HIV/tratamento farmacológico , Neoplasias/tratamento farmacológico , Receptores CXCR4/antagonistas & inibidores , Animais , Fármacos Anti-HIV/efeitos adversos , Antineoplásicos/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Benzilaminas/efeitos adversos , Ciclamos/efeitos adversos , Contaminação de Medicamentos , Infecções por HIV/imunologia , Infecções por HIV/metabolismo , Infecções por HIV/virologia , Humanos , Neoplasias/imunologia , Neoplasias/metabolismo , Doenças da Imunodeficiência Primária/tratamento farmacológico , Doenças da Imunodeficiência Primária/imunologia , Doenças da Imunodeficiência Primária/metabolismo , Receptores CXCR4/metabolismo , Transdução de Sinais , Microambiente Tumoral , Verrugas/tratamento farmacológico , Verrugas/imunologia , Verrugas/metabolismo
3.
Cereb Cortex ; 28(2): 538-548, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27999124

RESUMO

Neuronal survival and morphological maturation depends on the action of the transcription factor calcium responsive element binding protein (CREB), which regulates expression of several target genes in an activity-dependent manner. However, it remains largely unknown whether CREB-mediated transcription could play a role at early stages of neuronal differentiation, prior to the establishment of functional synaptic contacts. Here, we show that CREB is phosphorylated at very early stages of neuronal differentiation in vivo and in vitro, even in the absence of depolarizing agents. Using genetic tools, we also show that inhibition of CREB-signaling affects neuronal growth and survival in vitro without affecting cell proliferation and neurogenesis. Expression of A-CREB or M-CREB, 2 dominant-negative inhibitors of CREB, decreases cell survival and the complexity of neuronal arborization. Similar changes are observed in neurons treated with protein kinase A (PKA) and Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitors, which also show decreased levels of pCREBSer133. Notably, expression of CREB-FY, a Tyr134Phe CREB mutant with a lower Km for phosphorylation, partly rescues the effects of PKA and CaMKII inhibition. Our data indicate that CREB-mediated signaling play important roles at early stages of cortical neuron differentiation, prior to the establishment of fully functional synaptic contacts.


Assuntos
Diferenciação Celular/fisiologia , Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Neurônios/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Gravidez , Inibidores de Proteínas Quinases/farmacologia
4.
Angiogenesis ; 20(4): 533-546, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28699046

RESUMO

BACKGROUND: Three-dimensional visualization of the brain vasculature and its interactions with surrounding cells may shed light on diseases where aberrant microvascular organization is involved, including glioblastoma (GBM). Intravital confocal imaging allows 3D visualization of microvascular structures and migration of cells in the brain of mice, however, with limited imaging depth. To enable comprehensive analysis of GBM and the brain microenvironment, in-depth 3D imaging methods are needed. Here, we employed methods for optical tissue clearing prior to 3D microscopy to visualize the brain microvasculature and routes of invasion of GBM cells. METHODS: We present a workflow for ex vivo imaging of optically cleared brain tumor tissues and subsequent computational modeling. This workflow was used for quantification of the microvasculature in relation to nuclear or cellular density in healthy mouse brain tissues and in human orthotopic, infiltrative GBM8 and E98 glioblastoma models. RESULTS: Ex vivo cleared mouse brain tissues had a >10-fold imaging depth as compared to intravital imaging of mouse brain in vivo. Imaging of optically cleared brain tissue allowed quantification of the 3D microvascular characteristics in healthy mouse brains and in tissues with diffuse, infiltrative growing GBM8 brain tumors. Detailed 3D visualization revealed the organization of tumor cells relative to the vasculature, in both gray matter and white matter regions, and patterns of multicellular GBM networks collectively invading the brain parenchyma. CONCLUSIONS: Optical tissue clearing opens new avenues for combined quantitative and 3D microscopic analysis of the topographical relationship between GBM cells and their microenvironment.


Assuntos
Neoplasias Encefálicas/patologia , Imageamento Tridimensional , Fenômenos Ópticos , Microambiente Tumoral , Animais , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Feminino , Fluorescência , Glioblastoma/irrigação sanguínea , Glioblastoma/patologia , Microscopia Intravital , Lectinas/metabolismo , Camundongos Nus , Microvasos/patologia , Neovascularização Patológica/patologia , Fótons
5.
Am J Physiol Renal Physiol ; 310(2): F183-91, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26538436

RESUMO

The apical Na-K-2Cl cotransporter (NKCC2) mediates NaCl reabsorption by the thick ascending limb (TAL). The amount of NKCC2 at the apical membrane of TAL cells is determined by exocytic delivery, recycling, and endocytosis. Surface biotinylation allows measurement of NKCC2 endocytosis, but it has low time resolution and does not allow imaging of the dynamic process of endocytosis. We hypothesized that total internal reflection fluorescence (TIRF) microscopy imaging of labeled NKCC2 would allow monitoring of NKCC2 endocytosis in polarized Madin-Darby canine kidney (MDCK) and TAL cells. Thus we generated a NKCC2 construct containing a biotin acceptor domain (BAD) sequence between the transmembrane domains 5 and 6. Once expressed in polarized MDCK or TAL cells, surface NKCC2 was specifically biotinylated by exogenous biotin ligase (BirA). We also demonstrate that expression of a secretory form of BirA in TAL cells induces metabolic biotinylation of NKCC2. Labeling biotinylated surface NKCC2 with fluorescent streptavidin showed that most apical NKCC2 was located within small discrete domains or clusters referred to as "puncta" on the TIRF field. NKCC2 puncta were observed to disappear from the TIRF field, indicating an endocytic event which led to a decrease in the number of surface puncta at a rate of 1.18 ± 0.16%/min in MDCK cells, and a rate 1.09 ± 0.08%/min in TAL cells (n = 5). Treating cells with a cholesterol-chelating agent (methyl-ß-cyclodextrin) completely blocked NKCC2 endocytosis. We conclude that TIRF microscopy of labeled NKCC2 allows the dynamic imaging of individual endocytic events at the apical membrane of TAL cells.


Assuntos
Endocitose/fisiologia , Rim/metabolismo , Microscopia de Fluorescência/métodos , Membro 1 da Família 12 de Carreador de Soluto/metabolismo , Animais , Linhagem Celular , Membrana Celular/metabolismo , Cães , Rim/citologia
6.
Cancer Immunol Immunother ; 65(12): 1545-1554, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27722909

RESUMO

Currently, there is no stable and flexible method to label and track cytotoxic T lymphocytes (CTLs) in vivo in CTL immunotherapy. We aimed to evaluate whether the sulfo-hydroxysuccinimide (NHS)-biotin-streptavidin (SA) platform could chemically modify the cell surface of CTLs for in vivo tracking. CD8+ T lymphocytes were labeled with sulfo-NHS-biotin under different conditions and then incubated with SA-Alexa647. Labeling efficiency was proportional to sulfo-NHS-biotin concentration. CD8+ T lymphocytes could be labeled with higher efficiency with sulfo-NHS-biotin in DPBS than in RPMI (P < 0.05). Incubation temperature was not a key factor. CTLs maintained sufficient labeling for at least 72 h (P < 0.05), without altering cell viability. After co-culturing labeled CTLs with mouse glioma stem cells (GSCs) engineered to present biotin on their surface, targeting CTLs could specifically target biotin-presenting GSCs and inhibited cell proliferation (P < 0.01) and tumor spheres formation. In a biotin-presenting GSC brain tumor model, targeting CTLs could be detected in biotin-presenting gliomas in mouse brains but not in the non-tumor-bearing contralateral hemispheres (P < 0.05). In vivo fluorescent molecular tomography imaging in a subcutaneous U87 mouse model confirmed that targeting CTLs homed in on the biotin-presenting U87 tumors but not the control U87 tumors. PET imaging with 89Zr-deferoxamine-biotin and SA showed a rapid clearance of the PET signal over 24 h in the control tumor, while only minimally decreased in the targeted tumor. Thus, sulfo-NHS-biotin-SA labeling is an efficient method to noninvasively track the migration of adoptive transferred CTLs and does not alter CTL viability or interfere with CTL-mediated cytotoxic activity.


Assuntos
Biotinilação/métodos , Imunoterapia/métodos , Linfócitos T Citotóxicos/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Humanos , Camundongos
8.
Bioorg Med Chem Lett ; 26(1): 133-9, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26602273

RESUMO

In recent years, mGlu4 has received great research attention because of the potential benefits of mGlu4 activation in treating numerous brain disorders, such as Parkinson's disease (PD). A specific mGlu4 PET radioligand could be an important tool in understanding the role of mGlu4 in both healthy and disease conditions, and also for the development of new drugs. In this study, we synthesized four new N-(methylthiophenyl)picolinamide derivatives 11-14. Of these ligands, 11 and 14 showed high in vitro binding affinity for mGlu4 with IC50 values of 3.4nM and 3.1nM, respectively, and suitable physicochemical parameters. Compound 11 also showed enhanced metabolic stability and good selectivity to other mGluRs. [(11)C]11 and [(11)C]14 were radiolabeled using the [(11)C]methylation of the thiophenol precursors 20a and 20c with [(11)C]CH3I in 19.0% and 34.8% radiochemical yields (RCY), and their specific activities at the end of synthesis (EOS) were 496±138GBq/µmol (n=6) and 463±263GBq/µmol (n=4), respectively. The PET studies showed that [(11)C]11 accumulated fast into the brain and had higher uptake, slower washout and 25% better contrast than [(11)C]2, indicating improved imaging characteristics as PET radiotracer for mGlu4 compared to [(11)C]2. Therefore, [(11)C]11 will be a useful radioligand to investigate mGlu4 in different biological applications.


Assuntos
Ácidos Picolínicos/síntese química , Ácidos Picolínicos/metabolismo , Tomografia por Emissão de Pósitrons , Ensaio Radioligante , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Tiofenos/síntese química , Tiofenos/metabolismo , Animais , Relação Dose-Resposta a Droga , Ligantes , Masculino , Estrutura Molecular , Ácidos Picolínicos/química , Ligação Proteica , Compostos Radiofarmacêuticos/análise , Compostos Radiofarmacêuticos/química , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Especificidade por Substrato , Tiofenos/química
9.
Mol Ther ; 23(7): 1234-1247, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25903473

RESUMO

Using in silico analysis of The Cancer Genome Atlas (TCGA), we identified microRNAs associated with glioblastoma (GBM) survival, and predicted their functions in glioma growth and progression. Inhibition of two "risky" miRNAs, miR-148a and miR-31, in orthotopic xenograft GBM mouse models suppressed tumor growth and thereby prolonged animal survival. Intracranial tumors treated with uncomplexed miR-148a and miR-31 antagomirs exhibited reduced proliferation, stem cell depletion, and normalized tumor vasculature. Growth-promoting functions of these two miRNAs were, in part, mediated by the common target, the factor inhibiting hypoxia-inducible factor 1 (FIH1), and the downstream pathways involving hypoxia-inducible factor HIF1α and Notch signaling. Therefore, miR-31 and miR-148a regulate glioma growth by maintaining tumor stem cells and their niche, and providing the tumor a way to activate angiogenesis even in a normoxic environment. This is the first study that demonstrates intratumoral uptake and growth-inhibiting effects of uncomplexed antagomirs in orthotopic glioma.


Assuntos
Neoplasias Encefálicas/genética , Glioblastoma/genética , MicroRNAs/biossíntese , Oligonucleotídeos/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Genoma Humano , Glioblastoma/patologia , Glioblastoma/terapia , Humanos , Camundongos , MicroRNAs/antagonistas & inibidores , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Stem Cells ; 32(8): 2021-32, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24801379

RESUMO

The tumor-tropic properties of neural stem cells (NSCs) have been shown to serve as a novel strategy to deliver therapeutic genes to tumors. Recently, we have reported that the cardiac glycoside lanatoside C (Lan C) sensitizes glioma cells to the anticancer agent tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Here, we engineered an FDA-approved human NSC line to synthesize and secrete TRAIL and the Gaussia luciferase (Gluc) blood reporter. We showed that upon systemic injection, these cells selectively migrate toward tumors in the mice brain across the blood-brain barrier, target invasive glioma stem-like cells, and induce tumor regression when combined with Lan C. Gluc blood assay revealed that 30% of NSCs survived 1 day postsystemic injection and around 0.5% of these cells remained viable after 5 weeks in glioma-bearing mice. This study demonstrates the potential of systemic injection of NSCs to deliver anticancer agents, such as TRAIL, which yields glioma regression when combined with Lan C.


Assuntos
Neoplasias Encefálicas/patologia , Terapia Genética/métodos , Glioblastoma/patologia , Células-Tronco Neurais/transplante , Ligante Indutor de Apoptose Relacionado a TNF/administração & dosagem , Animais , Apoptose/genética , Glicosídeos Cardíacos/farmacologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Técnicas de Cocultura , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Humanos , Lanatosídeos/farmacologia , Camundongos , Camundongos Nus , Ligante Indutor de Apoptose Relacionado a TNF/genética , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Brain ; 137(Pt 4): 1019-29, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24566671

RESUMO

Leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation is a disorder caused by recessive mutations in the gene DARS2, which encodes mitochondrial aspartyl-tRNA synthetase. Recent observations indicate that the phenotypic range of the disease is much wider than initially thought. Currently, no treatment is available. The aims of our study were (i) to explore a possible genotype-phenotype correlation; and (ii) to identify potential therapeutic agents that modulate the splice site mutations in intron 2 of DARS2, present in almost all patients. A cross-sectional observational study was performed in 78 patients with two DARS2 mutations in the Amsterdam and Helsinki databases up to December 2012. Clinical information was collected via questionnaires. An inventory was made of the DARS2 mutations in these patients and those previously published. An assay was developed to assess mitochondrial aspartyl-tRNA synthetase enzyme activity in cells. Using a fluorescence reporter system we screened for drugs that modulate DARS2 splicing. Clinical information of 66 patients was obtained. The clinical severity varied from infantile onset, rapidly fatal disease to adult onset, slow and mild disease. The most common phenotype was characterized by childhood onset and slow neurological deterioration. Full wheelchair dependency was rare and usually began in adulthood. In total, 60 different DARS2 mutations were identified, 13 of which have not been reported before. Except for 4 of 42 cases published by others, all patients were compound heterozygous. Ninety-four per cent of the patients had a splice site mutation in intron 2. The groups of patients sharing the same two mutations were too small for formal assessment of genotype-phenotype correlation. However, some combinations of mutations were consistently associated with a mild phenotype. The mitochondrial aspartyl-tRNA synthetase activity was strongly reduced in patient cells. Among the compounds screened, cantharidin was identified as the most potent modulator of DARS2 splicing. In conclusion, the phenotypic spectrum of leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation is wide, but most often the disease has a relatively slow and mild course. The available evidence suggests that the genotype influences the phenotype, but because of the high number of private mutations, larger numbers of patients are necessary to confirm this. The activity of mitochondrial aspartyl-tRNA synthetase is significantly reduced in patient cells. A compound screen established a 'proof of principle' that the splice site mutation can be influenced. This finding is promising for future therapeutic strategies.


Assuntos
Processamento Alternativo/efeitos dos fármacos , Aspartato-tRNA Ligase/deficiência , Leucoencefalopatias/complicações , Leucoencefalopatias/genética , Doenças Mitocondriais/complicações , Doenças Mitocondriais/genética , Adolescente , Adulto , Idade de Início , Aspartato-tRNA Ligase/genética , Aspartato-tRNA Ligase/metabolismo , Cantaridina/farmacologia , Criança , Pré-Escolar , Estudos Transversais , Análise Mutacional de DNA , Progressão da Doença , Inibidores Enzimáticos/farmacologia , Feminino , Estudos de Associação Genética , Humanos , Lactente , Leucoencefalopatias/tratamento farmacológico , Leucoencefalopatias/enzimologia , Masculino , Pessoa de Meia-Idade , Doenças Mitocondriais/tratamento farmacológico , Doenças Mitocondriais/enzimologia , Mutação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Adulto Jovem
12.
Proc Natl Acad Sci U S A ; 109(45): E3119-27, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23071298

RESUMO

Brain metastases are a serious obstacle in the treatment of patients with human epidermal growth factor receptor-2 (HER2)-amplified breast cancer. Although extracranial disease is controlled with HER2 inhibitors in the majority of patients, brain metastases often develop. Because these brain metastases do not respond to therapy, they are frequently the reason for treatment failure. We developed a mouse model of HER2-amplified breast cancer brain metastasis using an orthotopic xenograft of BT474 cells. As seen in patients, the HER2 inhibitors trastuzumab and lapatinib controlled tumor progression in the breast but failed to contain tumor growth in the brain. We observed that the combination of a HER2 inhibitor with an anti-VEGF receptor-2 (VEGFR2) antibody significantly slows tumor growth in the brain, resulting in a striking survival benefit. This benefit appears largely due to an enhanced antiangiogenic effect: Combination therapy reduced both the total and functional microvascular density in the brain xenografts. In addition, the combination therapy led to a marked increase in necrosis of the brain lesions. Moreover, we observed even better antitumor activity after combining both trastuzumab and lapatinib with the anti-VEGFR2 antibody. This triple-drug combination prolonged the median overall survival fivefold compared with the control-treated group and twofold compared with either two-drug regimen. These findings support the clinical development of this three-drug regimen for the treatment of HER2-amplified breast cancer brain metastases.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/secundário , Neoplasias da Mama/tratamento farmacológico , Amplificação de Genes , Terapia de Alvo Molecular , Receptor ErbB-2/antagonistas & inibidores , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/patologia , Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/patologia , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Diagnóstico por Imagem , Modelos Animais de Doenças , Feminino , Humanos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/patologia , Lapatinib , Camundongos , Necrose , Neovascularização Patológica/tratamento farmacológico , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Análise de Sobrevida , Trastuzumab , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Mol Ther ; 21(7): 1297-305, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23648695

RESUMO

Glioblastoma (GBM) comprises 51% of all gliomas and is the most malignant form of brain tumors with a median survival of 18-21 months. Standard-of-care treatment includes maximal surgical resection of the tumor mass in combination with radiation and chemotherapy. However, as the poor survival rate indicates, these treatments have not been effective in preventing disease progression. Cellular immunotherapy is currently being explored as therapeutic approach to treat malignant brain tumors. In this review, we discuss advances in active, passive, and vaccine-based immunotherapeutic strategies for gliomas both at the bench and in the clinic.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Glioblastoma/terapia , Glioma/terapia , Imunoterapia/métodos , Humanos
14.
iScience ; 27(2): 108807, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38303726

RESUMO

Glioblastoma (GBM) is the most aggressive brain tumor, presenting major challenges due to limited treatment options. Standard care includes radiation therapy (RT) to curb tumor growth and alleviate symptoms, but its impact on GBM is limited. In this study, we investigated the effect of RT on immune suppression and whether extracellular vesicles (EVs) originating from GBM and taken up by the tumor microenvironment (TME) contribute to the induced therapeutic resistance. We observed that (1) ionizing radiation increases immune-suppressive markers on GBM cells, (2) macrophages exacerbate immune suppression in the TME by increasing PD-L1 in response to EVs derived from GBM cells which is further modulated by RT, and (3) RT increases CD206-positive macrophages which have the most potential in inducing a pro-oncogenic environment due to their increased uptake of tumor-derived EVs. In conclusion, RT affects GBM resistance by immuno-modulating EVs taken up by myeloid cells in the TME.

15.
Anal Chem ; 85(5): 3006-12, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23425213

RESUMO

Gaussia Luciferase (Gluc) has proven to be a powerful mammalian cell reporter for monitoring numerous biological processes in immunology, virology, oncology, and neuroscience. Current limitations of Gluc as a reporter include its emission of blue light, which is absorbed by mammalian tissues, limiting its use in vivo, and a flash-type bioluminescence reaction, making it unsuited for high-throughput applications. To overcome these limitations, a library of Gluc variants was generated using directed molecular evolution and screened for relative light output, a shift in emission spectrum, and glow-type light emission kinetics. Several variants with a 10-15 nm shift in their light emission peak were found. Further, a Gluc variant that catalyzes a glow-type bioluminescence reaction, suited for high-throughput applications, was also identified. These results indicate that molecular evolution could be used to modulate Gluc bioluminescence reaction characteristics.


Assuntos
Evolução Molecular Direcionada , Luz , Luciferases/genética , Luciferases/metabolismo , Medições Luminescentes , Mutação , Sequência de Aminoácidos , Luciferases/química , Dados de Sequência Molecular
16.
Anal Chem ; 85(21): 10205-10, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24131224

RESUMO

Reporters secreted into the conditioned medium of cells in culture or into blood in vivo have shown to be useful tools for simple and noninvasive monitoring of biological processes in real-time. Here, we characterize the naturally secreted Vargula luciferase as a secreted blood reporter and show that this reporter can be multiplexed with the secreted Gaussia luciferase and alkaline phosphatase for simultaneous monitoring of three different cellular processes in the same biological system. We applied this system to monitor the response of three different subsets of glioma cells to a clinically relevant chemotherapeutic agent in the same well in culture or animal in vivo. This system could be extended to any field to detect multiple processes in the same biological system and is amenable for high-throughput screening to find drugs that affect multiple cellular populations/phenomena simultaneously.


Assuntos
Sangue , Luciferases/sangue , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Nus
17.
Mol Ther ; 20(5): 960-71, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22314290

RESUMO

Adeno-associated virus (AAV) vectors have shown remarkable efficiency for gene delivery to cultured cells and in animal models of human disease. However, limitations to AAV vectored gene transfer exist after intravenous transfer, including off-target gene delivery (e.g., liver) and low transduction of target tissue. Here, we show that during production, a fraction of AAV vectors are associated with microvesicles/exosomes, termed vexosomes (vector-exosomes). AAV capsids associated with the surface and in the interior of microvesicles were visualized using electron microscopy. In cultured cells, vexosomes outperformed conventionally purified AAV vectors in transduction efficiency. We found that purified vexosomes were more resistant to a neutralizing anti-AAV antibody compared to conventionally purified AAV. Finally, we show that vexosomes bound to magnetic beads can be attracted to a magnetized area in cultured cells. Vexosomes represent a unique entity which offers a promising strategy to improve gene delivery.


Assuntos
Dependovirus/genética , Técnicas de Transferência de Genes , Capsídeo/química , Capsídeo/ultraestrutura , Linhagem Celular Tumoral , Centrifugação com Gradiente de Concentração , Dependovirus/ultraestrutura , Terapia Genética/métodos , Vetores Genéticos/ultraestrutura , Humanos , Microscopia Eletrônica , Neoplasias/genética , Neoplasias/terapia , Transdução Genética , Transfecção
18.
ACS Appl Mater Interfaces ; 15(1): 182-199, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35929960

RESUMO

Shuttling various bioactive substances across the blood-brain barrier (BBB) bidirectionally, extracellular vesicles (EVs) have been opening new frontiers for the diagnosis and therapy of central nervous system (CNS) diseases. However, clinical translation of EV-based theranostics remains challenging due to difficulties in effective EV engineering for superior imaging/therapeutic potential, ultrasensitive EV detection for small sample volume, as well as scale-up and standardized EV production. In the past decade, continuous advancement in nanotechnology provided extensive concepts and strategies for EV engineering and analysis, which inspired the application of EVs for CNS diseases. Here we will review the existing types of EV-nanomaterial hybrid systems with improved diagnostic and therapeutic efficacy for CNS diseases. A summary of recent progress in the incorporation of nanomaterials and nanostructures in EV production, separation, and analysis will also be provided. Moreover, the convergence between nanotechnology and microfluidics for integrated EV engineering and liquid biopsy of CNS diseases will be discussed.


Assuntos
Doenças do Sistema Nervoso Central , Vesículas Extracelulares , Nanoestruturas , Humanos , Medicina de Precisão , Nanotecnologia , Doenças do Sistema Nervoso Central/diagnóstico , Doenças do Sistema Nervoso Central/terapia , Vesículas Extracelulares/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-37377441

RESUMO

INTRODUCTION: Leadership skills are essential for a successful career in medical research but are often not formally taught. To address these gaps, we designed a leadership development program for early-stage investigators. METHODS: A 9-month virtual program with monthly 2-hour interactive sessions was designed, covering topics such as Leadership in Research, Mentoring, Building Diverse and Inclusive Teams, Managing Conflict, Influencing without Authority, Grant Administration, and Management. An anonymized survey was sent to participants before and after completion of the program, and the results were compared using the chi-squared test. RESULTS: Over a 2-year period, we selected two cohorts of 41 and 46 participants, respectively. After completion of the program, 92% of survey respondents indicated that the program met their expectations and 74% had made use of skills they learned. Participants enjoyed meeting new people and discussing common challenges. There was an increase in participants' perceived understanding of personal leadership qualities, mentoring, communication, conflict resolution, grant management, and collaboration with industry (P < .05). DISCUSSION: A leadership development program for early-stage investigators led to a significant increase in participants' perceived understanding of personal leadership qualities and competencies. It also offered participants the opportunity to meet other researchers in the institution and discuss common challenges.

20.
Front Cell Neurosci ; 17: 1134130, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37138770

RESUMO

The endocannabinoid system (ECS) refers to a complex cell-signaling system highly conserved among species formed by numerous receptors, lipid mediators (endocannabinoids) and synthetic and degradative enzymes. It is widely distributed throughout the body including the CNS, where it participates in synaptic signaling, plasticity and neurodevelopment. Besides, the olfactory ensheathing glia (OEG) present in the olfactory system is also known to play an important role in the promotion of axonal growth and/or myelination. Therefore, both OEG and the ECS promote neurogenesis and oligodendrogenesis in the CNS. Here, we investigated if the ECS is expressed in cultured OEG, by assessing the main markers of the ECS through immunofluorescence, western blotting and qRT-PCR and quantifying the content of endocannabinoids in the conditioned medium of these cells. After that, we investigated whether the production and release of endocannabinoids regulate the differentiation of oligodendrocytes co-cultured with hippocampal neurons, through Sholl analysis in oligodendrocytes expressing O4 and MBP markers. Additionally, we evaluated through western blotting the modulation of downstream pathways such as PI3K/Akt/mTOR and ERK/MAPK, being known to be involved in the proliferation and differentiation of oligodendrocytes and activated by CB1, which is the major endocannabinoid responsive receptor in the brain. Our data show that OEG expresses key genes of the ECS, including the CB1 receptor, FAAH and MAGL. Besides, we were able to identify AEA, 2-AG and AEA related mediators palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), in the conditioned medium of OEG cultures. These cultures were also treated with URB597 10-9 M, a FAAH selective inhibitor, or JZL184 10-9 M, a MAGL selective inhibitor, which led to the increase in the concentrations of OEA and 2-AG in the conditioned medium. Moreover, we found that the addition of OEG conditioned medium (OEGCM) enhanced the complexity of oligodendrocyte process branching in hippocampal mixed cell cultures and that this effect was inhibited by AM251 10-6 M, a CB1 receptor antagonist. However, treatment with the conditioned medium enriched with OEA or 2-AG did not alter the process branching complexity of premyelinating oligodendrocytes, while decreased the branching complexity in mature oligodendrocytes. We also observed no change in the phosphorylation of Akt and ERK 44/42 in any of the conditions used. In conclusion, our data show that the ECS modulates the number and maturation of oligodendrocytes in hippocampal mixed cell cultures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA