Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Autoimmun ; 115: 102525, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32709481

RESUMO

Interferon-ß has therapeutic efficacy in Multiple Sclerosis by reducing disease exacerbations and delaying relapses. Previous studies have suggested that the effects of type I IFN in Experimental Autoimmune Encephalomyelitis (EAE) in mice were targeted to myeloid cells. We used mice with a conditional deletion (cKO) of the type I IFN receptor (IFNAR) in T regulatory (Treg) cells to dissect the role of IFN signaling on Tregs. cKO mice developed severe EAE with an earlier onset than control mice. Although Treg cells from cKO mice were more activated, the activation status and effector cytokine production of CD4+Foxp3- T cells in the draining lymph nodes (dLN) was similar in WT and cKO mice during the priming phase. Production of chemokines (CCL8, CCL9, CCL22) by CD4+Foxp3- T cells and LN resident cells from cKO mice was suppressed. Suppression of chemokine production was accompanied by a substantial reduction of myeloid derived suppressor cells (MDSCs) in the dLN of cKO mice, while generation of MDSCs and recruitment to peripheral organs was comparable. This study demonstrates that signaling by type I IFNs in Tregs reduces their capacity to suppress chemokine production, with resultant alteration of the entire microenvironment of draining lymph nodes leading to enhancement of MDSC homing, and beneficial effects on disease outcome.


Assuntos
Encefalomielite Autoimune Experimental/imunologia , Interferon Tipo I/metabolismo , Esclerose Múltipla/imunologia , Células Supressoras Mieloides/imunologia , Linfócitos T Reguladores/imunologia , Animais , Quimiocina CCL22/metabolismo , Quimiocina CCL8/metabolismo , Quimiocinas CC/metabolismo , Encefalomielite Autoimune Experimental/patologia , Humanos , Linfonodos/metabolismo , Linfonodos/patologia , Proteínas Inflamatórias de Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Esclerose Múltipla/patologia , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Linfócitos T Reguladores/metabolismo
2.
Immunology ; 158(2): 104-120, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31318442

RESUMO

Activation of B and T lymphocytes leads to major remodelling of the metabolic landscape of the cells enabling their post-activation functions. However, naive B and T lymphocytes also show metabolic differences, and the genesis, nature and functional significance of these differences are not yet well understood. Here we show that resting B-cells appeared to have lower energy demands than resting T-cells as they consumed lower levels of glucose and fatty acids and produced less ATP. Resting B-cells are more dependent on OXPHOS, while T-cells show more dependence on aerobic glycolysis. However, despite an apparently higher energy demand, T lineage cells showed lower rates of protein synthesis than equivalent B lineage stages. These metabolic differences between the two lineages were established early during lineage differentiation, and were functionally significant. Higher levels of protein synthesis in B-cells were associated with increased synthesis of MHC class II molecules and other proteins associated with antigen internalization, transport and presentation. The combination of higher energy demand and lower protein synthesis in T-cells was consistent with their higher ATP-dependent motility. Our data provide an integrated perspective of the metabolic differences and their functional implications between the B and T lymphocyte lineages.


Assuntos
Linfócitos B/metabolismo , Glicólise/imunologia , Fosforilação Oxidativa , Linfócitos T/metabolismo , Trifosfato de Adenosina/biossíntese , Animais , Linfócitos B/citologia , Linfócitos B/imunologia , Diferenciação Celular/imunologia , Linhagem da Célula/genética , Linhagem da Célula/imunologia , Ácidos Graxos/metabolismo , Expressão Gênica , Glucose/metabolismo , Glicólise/genética , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Imunofenotipagem , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Especificidade de Órgãos , Cultura Primária de Células , Biossíntese de Proteínas/imunologia , Linfócitos T/citologia , Linfócitos T/imunologia
3.
Indian J Med Res ; 138(5): 577-90, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24434313

RESUMO

Multiple checkpoints regulating finely balanced death-versus-survival decisions characterize both thymic development and peripheral homeostasis of T lymphocytes. While exploring the mechanisms of T cell death involved at various stages during the life of a T cell, we have observed and reported a variety of non-redundant roles for apoptosis inducing factor (Aif), a mitochondrial flavoprotein. Aif is ubiquitously expressed in all cell lineages and functions as an NADH oxidase in its mitochondrial location. It is released following the mitochondrial death signals, whereupon it translocates to the nucleus, binds to DNA and causes large-scale DNA fragmentation. During T cell development, Aif is important for developing thymocytes to navigate the double negative (DN)3 to DN4 transition (beta-selection), via its oxidoreductase property which protects the rapidly proliferating cells from death due to reactive oxygen species (ROS). In peripheral mature T cells, Aif deficiency leads to an increased susceptibility of T cell blasts to activation induced cell death (AICD), possibly mediated by its antioxidant function, and decreased sensitivity to neglect-induced death (NID). Thus, Aif seems to have pro-apoptotic and anti-apoptotic roles in the same lineage in different contexts and at different stages. Surprisingly, in the closely related B lymphocyte lineage, Aif deficiency does not result in any abnormality. These findings generate the possibility of specific T cell dysfunction in human disease caused by Aif deficiency, as well as in mitochondriopathies due to other causes. Also, these data raise questions regarding the basis of lineage-specific consequences of the dysfunction/deficiency of apparently ubiquitous molecules.


Assuntos
Fator de Indução de Apoptose/metabolismo , Diferenciação Celular/genética , Linfócitos T/metabolismo , Timo/crescimento & desenvolvimento , Antioxidantes/metabolismo , Apoptose/genética , Fator de Indução de Apoptose/genética , Linhagem da Célula/imunologia , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Complexos Multienzimáticos/metabolismo , NADH NADPH Oxirredutases/metabolismo , Linfócitos T/imunologia , Timo/metabolismo
4.
Sci Rep ; 7: 46029, 2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28378771

RESUMO

X-linked immune-deficient (Xid) mice, carrying a mutation in Bruton's tyrosine kinase (Btk), have multiple B cell lineage differentiation defects. We now show that, while Xid mice showed only mild reduction in the frequency of the late transitional (T2) stage of peripheral B cells, the defect became severe when the Xid genotype was combined with either a CD40-null, a TCRbeta-null or an MHC class II (MHCII)-null genotype. Purified Xid T1 and T2 B cells survived poorly in vitro compared to wild-type (WT) cells. BAFF rescued WT but not Xid T1 and T2 B cells from death in culture, while CD40 ligation equivalently rescued both. Xid transitional B cells ex vivo showed low levels of the p100 protein substrate for non-canonical NF-kappaB signalling. In vitro, CD40 ligation induced equivalent activation of the canonical but not of the non-canonical NF-kappaB pathway in Xid and WT T1 and T2 B cells. CD40 ligation efficiently rescued p100-null T1 B cells from neglect-induced death in vitro. These data indicate that CD40-mediated signals, likely from CD4 T cells, can mediate peripheral transitional B cell maturation independent of Btk and the non-canonical NF-kappaB pathway, and thus contribute to the understanding of the complexities of peripheral B cell maturation.


Assuntos
Linfócitos B/citologia , Linfócitos B/enzimologia , Diferenciação Celular , Proteínas Tirosina Quinases/metabolismo , Tirosina Quinase da Agamaglobulinemia , Animais , Apoptose , Fator Ativador de Células B/metabolismo , Receptor do Fator Ativador de Células B/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Antígenos CD40/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Transdução de Sinais , Baço/metabolismo
5.
J Exp Med ; 209(9): 1641-53, 2012 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-22869892

RESUMO

Apoptosis-inducing factor (Aif) is a mitochondrial flavoprotein that regulates cell metabolism and survival in many tissues. We report that aif-hypomorphic harlequin (Hq) mice show thymic hypocellularity and a cell-autonomous thymocyte developmental block associated with apoptosis at the ß-selection stage, independent of T cell receptor ß recombination. No abnormalities are observed in the B cell lineage. Transgenes encoding wild-type or DNA-binding-deficient mutant Aif rectify the thymic defect, but a transgene encoding oxidoreductase activity-deficient mutant Aif does not. The Hq thymic block is reversed in vivo by antioxidant treatment, and Hq T but not B lineage cells show enhanced oxidative stress. Thus, Aif, a ubiquitous protein, serves a lineage-specific nonredundant antiapoptotic role in the T cell lineage by regulating reactive oxygen species during thymic ß-selection.


Assuntos
Fator de Indução de Apoptose/fisiologia , Linfócitos T/fisiologia , Animais , Apoptose , Morte Celular , Linhagem da Célula , DNA/metabolismo , Feminino , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T , Masculino , Camundongos , Camundongos Mutantes , Camundongos Transgênicos , Espécies Reativas de Oxigênio/metabolismo , Recombinação Genética , Timócitos/metabolismo , Timócitos/patologia , Timo/crescimento & desenvolvimento , Timo/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA