Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Environ Sci (China) ; 124: 794-805, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36182184

RESUMO

Both concentrations and emissions of many air pollutants have been decreasing due to implement of control measures in China, in contrast to the fact that an increase in emissions of non-methane hydrocarbons (NMHCs) has been reported. This study employed seven years continuous NMHCs measurements and the related activities data of Shanghai, a megacity in China, to explore evolution of emissions and effectiveness of air pollution control measures. The mixing ratio of NMHCs showed no statistical interannual changes, of which their compositions exhibited marked changes. This resulted in a decreasing trend of ozone formation potential by 3.8%/year (p < 0.05, the same below), which should be beneficial to ozone pollution mitigation as its production in Shanghai is in the NMHCs-limited regime. Observed alkanes, aromatics and acetylene changed by +3.7%/year, -5.9%/year and -7.4%/year, respectively, and alkenes showed no apparent trend. NMHCs sources were apportioned by a positive matrix factorization model. Accordingly, vehicular emissions (-5.9%/year) and petrochemical industry emissions (-7.1%/year) decreased significantly, but the decrease slowed down; significant reduction in solvent usage (-9.0%/year) appeared after 2010; however, emissions of natural gas (+12.6%/year) and fuel evaporation (with an increasing fraction) became more important. The inconsistency between observations and inventories was found in interannual trend and speciation as well as source contributions, emphasizing the need for further validation in NMHCs emission inventory. Our study confirms the effectiveness of measures targeting mobile and centralized emissions from industrial sources and reveals a need focusing on fugitive emissions, which provided new insights into future air policies in polluted region.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Alcanos/análise , Alcenos/análise , Alcinos , China , Monitoramento Ambiental/métodos , Hidrocarbonetos/análise , Metano , Gás Natural , Ozônio/química , Solventes , Emissões de Veículos/análise , Compostos Orgânicos Voláteis/análise
2.
Environ Sci Technol ; 52(24): 14216-14227, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30288976

RESUMO

An integrated source apportionment methodology is developed by amalgamating the receptor-oriented model (ROM) and source-oriented numerical simulations (SOM) together to eliminate the weaknesses of individual SA methods. This approach attempts to apportion and dissect the PM2.5 sources in the Yangtze River Delta region during winter. First, three ROM models (CMB, PMF, ME2) are applied and compared for the preliminary SA results, with information from PM2.5 sampling and lab analysis during the winter seasons. The detailed source category contribution of SOM to PM2.5 is further simulated using the WRF-CAMx model. The two pieces of information from both ROM and SOM are then stitched together to give a comprehensive information on the PM2.5 sources over the region. With the integrated approach, the detailed contributing sources of the ambient PM2.5 at different receptors including rural and urban, coastal and in-land, northern and southern receptors are analyzed. The results are compared with previous data and shows good agreement. This integrative approach is more comprehensive and is able to produce a more profound and detailed understanding between the sources and receptors, compared with single models.


Assuntos
Poluentes Atmosféricos , Material Particulado , China , Monitoramento Ambiental , Rios
3.
Environ Sci Technol ; 52(21): 12934-12942, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30351037

RESUMO

Intermediate volatility organic compound (IVOC) emissions from a large cargo vessel were characterized under real-world operating conditions using an on-board measurement system. Test ship fuel-based emission factors (EFs) of total IVOCs were determined for two fuel types and seven operating conditions. The average total IVOC EF was 1003 ± 581 mg·kg-fuel-1, approximately 0.76 and 0.29 times the EFs of primary organic aerosol (POA) emissions from low-sulfur fuel (LSF, 0.38 wt % S) and high-sulfur fuel (HSF, 1.12 wt % S), respectively. The average total IVOC EF from LSF was 2.4 times that from HSF. The average IVOC EF under low engine load (15%) was 0.5-1.6 times higher than those under 36%-74% loads. An unresolved complex mixture (UCM) contributed 86.1 ± 1.9% of the total IVOC emissions. Ship secondary organic aerosol (SOA) production was estimated to be 546.5 ± 284.1 mg·kg-fuel-1; IVOCs contributed 98.9 ± 0.9% of the produced SOA on average. Fuel type was the dominant determinant of ship IVOC emissions, IVOC volatility distributions, and SOA production. The ship emitted more IVOC mass, produced higher proportions of volatile organic components, and produced more SOA mass when fueled with LSF than when fueled with HSF. When reducing ship POA emissions, more attention should be paid to commensurate control of ship SOA formation potential.


Assuntos
Poluentes Atmosféricos , Emissões de Veículos , Aerossóis , Compostos Orgânicos , Navios , Volatilização
4.
J Environ Sci (China) ; 48: 151-160, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27745660

RESUMO

In this work, a one-year observation focusing on high time resolution characteristics of components in fine particles was conducted at an urban site in Shanghai. Contributions of different components on visibility impairment were also studied. Our research indicates that the major components of PM2.5 in Shanghai are water-soluble inorganic ions and carbonaceous aerosol, accounting for about 60% and 30% respectively. Higher concentrations of sulfate (SO42-) and organic carbon (OC) in PM2.5 occurred in fall and summer, while higher concentrations of nitrate (NO3-) were observed in winter and spring. The mass concentrations of Cl- and K+ were higher in winter. Moreover, NO3- increased significantly during PM2.5 pollution episodes. The high values observed for the sulfate oxidizing rate (SOR), nitrate oxidizing rate (NOR) and secondary organic carbon (SOC) in OC indicate that photochemical reactions were quite active in Shanghai. The IMPROVE (Interagency Monitoring of Protected Visual Environments) formula was used in this study to investigate the contributions of individual PM2.5 chemical components to the light extinction efficient in Shanghai. Both NH4NO3 and (NH4)2SO4 had close relationships with visibility impairment in Shanghai. Our results show that the reduction of anthropogenic SO2, NOx and NH3 would have a significant effect on the improvement of air quality and visibility in Shanghai.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Material Particulado/análise , Aerossóis/análise , Aerossóis/química , Poluentes Atmosféricos/química , China , Nitratos , Tamanho da Partícula , Material Particulado/química , Estações do Ano , Sulfatos
5.
Environ Sci Technol ; 48(18): 10993-1001, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25184338

RESUMO

Fine aerosol particles in the urban areas of Shanghai and Los Angeles were collected on days that were characterized by their stagnant air and high organic aerosol concentrations. They were analyzed by nanospray-desorption electrospray ionization mass spectrometry with high mass resolution (m/Δm = 100,000). Solvent mixtures of acetonitrile and water and acetonitrile and toluene were used to extract and ionize polar and nonpolar compounds, respectively. A diverse mixture of oxygenated hydrocarbons, organosulfates, organonitrates, and organics with reduced nitrogen were detected in the Los Angeles sample. A majority of the organics in the Shanghai sample were detected as organosulfates. The dominant organosulfates that were detected at two locations have distinctly different molecular characteristics. Specifically, the organosulfates in the Los Angeles sample were dominated by biogenic products, while the organosulfates of a yet unknown origin found in the Shanghai sample had distinctive characteristics of long aliphatic carbon chains and low degrees of oxidation and unsaturation. The use of the acetonitrile and toluene solvent facilitated the observation of this type of organosulfates, which suggests that they could have been missed in previous studies that relied on sample extraction using common polar solvents. The high molecular weight and low degree of unsaturation and oxidization of the uncommon organosulfates suggest that they may act as surfactants and plausibly affect the surface tension and hygroscopicity of atmospheric particles. We propose that direct esterification of carbonyl or hydroxyl compounds by sulfates or sulfuric acid in the liquid phase could be the formation pathway of these special organosulfates. Long-chain alkanes from vehicle emissions might be their precursors.


Assuntos
Aerossóis/química , Poluentes Atmosféricos/química , Cidades , Monitoramento Ambiental/estatística & dados numéricos , Sulfatos/análise , Acetonitrilas , Carbono/análise , China , Monitoramento Ambiental/métodos , Los Angeles , Espectrometria de Massas por Ionização por Electrospray/métodos , Tolueno , Emissões de Veículos/análise , Compostos Orgânicos Voláteis/análise
6.
Sci Total Environ ; 869: 161817, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36708842

RESUMO

The emission and environmental impact of condensable particulate matter (CPM) from coal-fired power plants (CFPPs) are of increasing concern worldwide. Many studies on the characteristics of CPM emission have been conducted in China, but its source profile remains unclear, and its emission inventory remains high uncertainty. In this work, the latest measurements reported in the latest 33 studies for CPM inorganic and organic species emitted from CFPPs in China were summarized, and then a compositional source profile of CPM for CFPPs was developed for the first time in China, which involved 10 inorganic species and 71 organic species. In addition, the CPM emission inventory of CFPPs in Yantai of China was developed based on surveyed activity data, continuous emission monitoring system (CEMS), and the latest measurement data. The results show that: (1) Inorganic species accounted for 77.64 % of CPM emitted from CFPPs in Yantai, among which SO42- had the highest content, accounting for 23.74 % of CPM, followed by Cl-, accounting for 11.95 %; (2) Organic matter accounted for 22.36 % of CPM, among which alkanes accounted for the largest proportion of organic fraction (72.7 %); (3) Emission concentration method (EC) and CEMS-based emission ratio method (ERFPM,CEMS) were recommended to estimate CPM emissions for CFPPs; (4) The estimated CPM emission inventories of Yantai CFPPs in 2020 by the EC method and the ERFPM,CEMS method were 1231 tons and 929 tons, respectively, with uncertainties of -34 % ∼ 33 % and -27 % ∼ 57 %, respectively; (5) CPM emissions were mainly distributed in the northern coastal areas of Yantai. This developed CPM source profile and emission inventory can provide basic data for assessing the impacts of CPM on air quality and health. In addition, this study can provide an important methodology for developing CPM emission inventories and CPM emission source profiles for stationary combustion sources in other regions.

7.
Chemosphere ; 298: 134291, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35283155

RESUMO

A convenient technique for direct solids analysis, laser ablation single particle aerosol mass spectrometry (LA-SPAMS), was used to investigate lead and other components in soil and bark samples from around a battery industrial park. In total, over 50,000 particles ranging in size from 0.2 to 2 µm were sampled and approximately 15-35% of the particles were analyzed for chemical composition. The mean mass spectrum results showed that the intensity of lead varied widely among sampling points, reaching the highest intensity in the topsoil and bark at sampling point 4, located closest to the core factory. Based on the neural network algorithm of adaptive resonance theory (ART-2a), the topsoil and bark samples were classified into five categories: crustal composition (Ca+, silicates, aluminates, etc.), elemental carbon (C2-, C3-, C4-, etc.), organic carbon (CN-, levoglucosan, etc.), secondary inorganic sources (phosphates, nitrates, sulfates), and heavy metals (Pb+, Zn+, Cu+), with the proportion of Pb varying from 0.020 to 0.25% and 0.030-9.41% in topsoil and bark samples, respectively, while the proportion of Cu and Zn in topsoil and bark samples did not differ as greatly as Pb. In addition, the particle number concentrations of lead particles in topsoil and bark ranged from 0.14 to 3.48% and 0.36-37.93%, respectively. The concentrations of Pb in topsoil and bark samples measured by ICP-OES varied from 71 to 791 ppm and 172-2595 ppm, respectively. Overall, both the lead content in topsoil samples measured by LA-SPAMS and ICP-OES reached maximum values at sampling points 4 and 5, respectively, indicating moderate pollution with Pb at these two sites. This convenient LA-SPAMS method not only accurately detects the composition of solid samples, the mixing state of particulate matter, and the analytical component sources, but also omits tedious pretreatment steps, reduces the use of organic solvents, and shortens the detection time of solid samples, thereby providing an attractive method for soil environmental quality monitoring.


Assuntos
Poluentes Atmosféricos , Terapia a Laser , Metais Pesados , Poluentes do Solo , Aerossóis/análise , Poluentes Atmosféricos/análise , Carbono/análise , China , Monitoramento Ambiental , Chumbo/análise , Espectrometria de Massas/métodos , Metais Pesados/análise , Solo , Poluentes do Solo/análise
8.
Environ Pollut ; 264: 114549, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32408078

RESUMO

Spatiotemporal variations in PM2.5 are a key factor affecting personal pollution exposure levels in urban areas. However, fixed-site monitoring stations are so sparsely distributed that they hardly capture the dynamic and fine-scale variations in PM2.5 in urban areas with complex geographical features and urban forms. Recently, a distributed air sensor network (DASN) was deployed in Dezhou city, China, to monitor fine-scale air pollution information and obtain deep insight into variations in PM2.5. Based on the data collected by the DASN, this paper investigated the spatiotemporal patterns of PM2.5 using the time-series clustering method. The results demonstrated that there were four stages of PM2.5 daily variations, i.e., accumulation, continuous pollution, dispersion, and cleaning. Generally, the stage of dispersion occurred more rapidly than the stage of accumulation, and PM2.5 accumulated easily in warm and humid weather with low wind speeds. However, the stage of dispersion was affected mainly by high wind speeds and precipitation. Additionally, the results suggested that four variation stages did not strictly correspond to seasonal divisions. The spatial distributions of PM2.5 revealed that the main pollution source was located in a southeastern industrial park, which exhibited a significant impact throughout the four stages. Considering both the temporal and spatial characteristics of PM2.5, this study successfully identified pollution hotspots and confirmed the effect of industrial parks. The study demonstrates that the DASN has high prospective applicability for assessing the fine-scale spatial distribution of PM2.5, and the time-series clustering method can also assist environmental researchers in further exploring the spatiotemporal characteristics of urban air pollution.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , China , Cidades , Monitoramento Ambiental , Material Particulado/análise , Estudos Prospectivos
9.
Huan Jing Ke Xue ; 41(11): 4786-4802, 2020 Nov 08.
Artigo em Zh | MEDLINE | ID: mdl-33124223

RESUMO

Diagnostic indicators for the validation of PM2.5 compositional data were calculated, based on the monitoring results of approximately 2100 ambient samples collected in the Yangzi River Delta from 2014 to 2017. According to the results of a correlation analysis, we propose that the audit indexes of the monitoring data of PM2.5 components in ambient air should include:equivalent ratios of anion-cation charge balance(A/C), the consistency between sum of all measured components(∑species) and weighed PM2.5, the consistency between mass reconstructed PM2.5(PM2.5, reconstructed) and weighed PM2.5, the chemical consistency between elemental S and water-soluble SO42-, elemental K and water-soluble K+, and the chemical consistency of theoretical and tested NH4+. The double-sided 95% reference ranges of anion-cation equivalent balance (A/C), ∑species/PM2.5, PM2.5, reconstructed/PM2.5, S/SO42-, and K/K+ ratios were determined in terms of P2.5 and P97.5 as follows:(0.82, 1.35), (0.63, 0.94), (0.62, 1.00), (0.28, 0.50), and (0.66, 2.31). These diagnostic indicators were helpful for judging the errors of chemical component analysis and retain seasonal variation stability. In most cases, NH4+ existed in the form of NH4NO3 and (NH4)2SO4 in spring and summer. With the approach of autumn and winter, it transformed to NH4NO3, (NH4)2SO4, and NH4Cl. The results of literature verification showed the pass rate of A/C was 87.1% and the rate of other indexes was 100%, indicating that the above audit indexes we propose could be applied to not only the Yangzi River Delta but the entire country. Furthermore, there were certain conditions in applying the diagnostic indicators. The S/SO42- ratio worked well with PM2.5 ≥ 40 µg·m-3 in summer and with 60 µg·m-3 ≤ PM2.5 ≤ 140 µg·m-3 in spring, autumn, and winter. Other audit indexes were available universally in all weathers under the condition of PM2.5 ≥ 60 µg·m-3.


Assuntos
Poluentes Atmosféricos , Rios , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Íons/análise , Tamanho da Partícula , Material Particulado/análise
10.
Huan Jing Ke Xue ; 41(9): 3932-3940, 2020 Sep 08.
Artigo em Zh | MEDLINE | ID: mdl-33124272

RESUMO

In a recent field campaign focused on air quality study, aerosol optical properties, particle number concentration, and PM2.5 components were monitored in Changzhou, Jiangsu Province, from May 27 to June 27, 2019. An array of instruments were deployed that included scanning mobility particle size spectrometer (SMPS), aethalometer (AE33), cavity attenuation phase shift single albedo monitor (CAPS-ALB), monitor for aerosols and gases in ambient air (MARGA) and RT-4 organic carbon/elemental carbon (OC/EC) carbon analyzer to study the ① changes in chemical composition and optical parameters of the new particles generated during the campaign period. ② comparison of the aerosol extinction coefficient recorded by these instruments and measured value in the reconstruction of IMPROVE (interagency monitoring of protected visual environment) and the calculated coefficient using MIE theory model were carried out. During the entire campaign, two new particle generation events were observed and also found that the particle size continued to increase from 4 nm to 64 nm. It was monitored that in the initial stage of new particle generation, sulfate contributed greatly. The measured average aerosol extinction coefficient during the period of particle generation, using these instruments was 95.40 Mm-1, while the average aerosol extinction reconstruction using the IMPROVE model was observed to be 140.20 Mm-1. The theoretical calculations based on Mie theory model yielded an average extinction coefficient of 93.54 Mm-1. It was found that the average aerosol extinction in Changzhou is lower than the average value of the urban aerosol extinction coefficient, which is measured to be 300 Mm-1 in China, during this period. The deployment of multiple instruments in a single campaign is more desirable because the combination of all observations helped in better characterization of the physicochemical properties of ambient aerosols from various aspects, including particle size spectrum and chemical composition.

11.
Environ Pollut ; 242(Pt A): 667-674, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30025340

RESUMO

On-board emissions measurements were performed on a Handysize-class bulk carrier operating under real-world conditions. Emission factors (EFs) were determined for criteria pollutants such as NOx, CO, total hydrocarbons (THC), and PM; PM composition, including organic and elemental carbon (OC and EC), inorganic species, and a variety of organic compounds and VOC species (including alkanes, alkenes, single-ring aromatics, and oxygenated VOCs) were also analyzed. To investigate the impacts of engine type, fuel, and operating conditions on emissions, measurements were conducted on one main and one auxiliary engines using low- and high-sulfur fuels (LSF and HSF) under actual operating conditions, including at-berth, maneuvering, and cruising at different engine loads. OC was the most abundant PM component (contributing 45-65%), followed by sulfate (2-15%) and EC (1-20%). Compounds with 3 or 4 aromatic rings, including phenanthrene, fluoranthene, pyrene, and benzo[b+k]fluoranthene, dominated the particulate polycyclic aromatic hydrocarbons (PAHs) emitted from the ship, accounting for 69-89% of the total PAHs. Single-ring aromatics constituted 50-78% of the emitted VOCs and were dominated by toluene. In this study, switching from HSF (1.12% S) to LSF (0.38% S) reduced emitted PM by 12%, OC by 20%, sulfate by 71%, and particulate PAHs by 94%, but caused an increase in single-ring aromatics. The power-based EFs generally decreased with increasing engine loads. However, decreasing the ship engine load also reduced the vessel speed and, thus, decreased emissions over a given voyage distance. Herein, a Vessel Speed Reduction (VSR) from 11 to 8-9 knots decreased NOx and PM emissions by approximately 33% and 36%, respectively, and OC, EC, sulfate, and particulate PAHs in PM emissions by 34%, 83%, 29%, and 11%. These data can be used to minimize uncertainty in the emission factors used in ship emissions calculations.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Material Particulado/análise , Navios , Emissões de Veículos/análise , Aeronaves , Carbono/análise , Poeira , Gases , Hidrocarbonetos/análise , Compostos Orgânicos , Hidrocarbonetos Policíclicos Aromáticos/análise
12.
Huan Jing Ke Xue ; 39(5): 1971-1977, 2018 May 08.
Artigo em Zh | MEDLINE | ID: mdl-29965494

RESUMO

Cooking is one of important emission sources of fine particles (PM2.5). This study using the catering enterprises of Shanghai as an example, presents a method to estimate the PM2.5 emission inventory from cooking according to the number of stoves, cooking time, and number of customers. Based on in situ measurements, the concentrations of PM2.5 emissions ranged from 0.1 mg ·m-3 to 1.8 mg ·m-3, which exceeded the limit (1.0 mg ·m-3 for lampblack) in the national standard. Organic carbon dominated the PM2.5 emitted from cooking, accounting for more than 50%. Extremely high ratios of organic carbon to elemental carbon were observed, ranging from 58.8 to 752.3, which could be used as an indicator of cooking emissions. The emission factors of PM2.5 in the catering industry are closely related to the scale of the catering enterprises. The emission factors of large-and medium-sized enterprises are obviously higher than those of small and micro enterprises. The PM2.5 emissions of catering enterprises are mainly attributed to high emission loads of large enterprises and those for a large number of small and medium enterprises. The PM2.5 emission inventory of cooking in Shanghai was calculated according to the three emission factors above, and the results were very close. Therefore, the method for estimating the PM2.5 emission inventory for cooking presented in this study is helpful for other Chinese cities to calculate their PM2.5 emission inventory from cooking.

13.
Huan Jing Ke Xue ; 39(12): 5308-5314, 2018 Dec 08.
Artigo em Zh | MEDLINE | ID: mdl-30628373

RESUMO

The study of the sources, compositions, and formation mechanisms of pollutants at the background site is crucial for the understanding of episodic events in the Yangtze River Delta (YRD). Secondary species are major components of PM2.5 particles. In this work, the compositions and concentrations of organic matter and secondary organic aerosol (SOA) at a background site of the YRD region were determined. The acidity and liquid water content of aerosol particles were modeled to investigate the impact of the physicochemical properties of aerosol particles on the formation of secondary species. The annual mean PM2.5 concentration in Chunan is 33 µg·m-3, with major contributions from inorganic sulfate (19%), nitrate (15%), ammonium (12%), and organic matter (19%). Nitrate is mainly locally formed, while sulfate is more affected by regional transport, except in winter. We found that the particles at the background site of the YRD have a high acidity and no seasonal variation was observed. The SOA formation at the background site of the YRD is enhanced by the liquid water content of the aerosol in spring, while it is more affected by the concentration of the oxidant, that is, O3, in summer. The contribution of SOA to PM2.5 in summer is as high as 40%.

14.
Sci Total Environ ; 621: 1300-1309, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29054635

RESUMO

Cooking emission is one of sources for ambient volatile organic compounds (VOCs), which is deleterious to air quality, climate and human health. These emissions are especially of great interest in large cities of East and Southeast Asia. We conducted a case study in which VOC emissions from kitchen extraction stacks have been sampled in total 57 times in the Megacity Shanghai. To obtain representative data, we sampled VOC emissions from kitchens, including restaurants of seven common cuisine types, canteens, and family kitchens. VOC species profiles and their chemical reactivities have been determined. The results showed that 51.26%±23.87% of alkane and 24.33±11.69% of oxygenated VOCs (O-VOCs) dominate the VOC cooking emissions. Yet, the VOCs with the largest ozone formation potential (OFP) and secondary organic aerosol potential (SOAP) were from the alkene and aromatic categories, accounting for 6.8-97.0% and 73.8-98.0%, respectively. Barbequing has the most potential of harming people's heath due to its significant higher emissions of acetaldehyde, hexanal, and acrolein. Methodologies for calculating VOC emission factors (EF) for restaurants that take into account VOCs emitted per person (EFperson), per kitchen stove (EFkitchen stove) and per hour (EFhour) are developed and discussed. Methodologies for deriving VOC emission inventories (S) from restaurants are further defined and discussed based on two categories: cuisine types (Stype) and restaurant scales (Sscale). The range of Stype and Sscale are 4124.33-7818.04t/year and 1355.11-2402.21t/year, respectively. We also found that Stype and Sscale for 100,000 people are 17.07-32.36t/year and 5.61-9.95t/year, respectively. Based on Environmental Kuznets Curve, the annual total amount of VOCs emissions from catering industry in different provinces in China was estimated, which was 5680.53t/year, 6122.43t/year, and 66,244.59t/year for Shangdong and Guangdong provinces and whole China, respectively. Large and medium-scaled restaurants should be paid more attention with respect to regulation of VOCs.


Assuntos
Poluentes Atmosféricos/análise , Culinária , Monitoramento Ambiental , Compostos Orgânicos Voláteis/análise , China , Cidades , Humanos , Ozônio
15.
Huan Jing Ke Xue ; 39(7): 3090-3095, 2018 Jul 08.
Artigo em Zh | MEDLINE | ID: mdl-29962130

RESUMO

The status of treatment equipment, the emission characteristics, and the ozone formation potential (OFP) of volatile organic compounds (VOCs) for 11 typical enterprises, which were categorized into the 8 major VOC emission industries identified by the emission inventory of a typical city in the Yangtze River Delta, are discussed in this paper. There was a large difference in the removal efficiency of non-methane hydrocarbon (NMHC) between different treatment techniques, and even an increase in concentration occurred after some of the treatments. The current treatment equipment for VOCs needs further optimization. The emissions of NMHC, benzene, toluene, and xylene in most of the surveyed enterprises exceeded their corresponding standards, with toluene the worst offender. The most abundant compounds in the eight emission industries were aromatic hydrocarbons and oxygenated VOCs, whereas aromatic hydrocarbons contributed the most to ozone formation potential. There were large differences in emission characteristics of VOCs from different industries. Priority should be placed on the industries that have large OFP when control strategies of VOCs are considered.

16.
Huan Jing Ke Xue ; 39(5): 1978-1986, 2018 May 08.
Artigo em Zh | MEDLINE | ID: mdl-29965495

RESUMO

Particulate organic matter (POM) has attracted increasing attention recently due to its great contribution to fine particles (PM2.5) and complex components and sources. In the present study, 78 particulate organic compounds in PM2.5 were quantified at three sites in Shanghai during summer; these sites were located in urban (Xuhui), suburban (Qingpu), and coastal (Lin'gang) areas of the city. Accordingly, the chemical composition and spatial distribution were investigated and sources were explored based on the indicators and diagnostic ratios combined with backward trajectory. The results showed that during the period of observation, the quantified organic matter in the suburban area is about 319 ng ·m-3, close to the urban area but much higher than that of the coastal areas. Fatty acids were the largest contributors, followed by levoglucosan, polycyclic aromatic hydrocarbons (PAHs), n-alkanes, and hopanes. Source analysis based on tracer methods indicates that gasoline vehicle emissions were the main source of POM in Shanghai. Biomass burning from the northeast impacted somewhat on the urban area and western suburbs during the observation period. Terrestrial plant emissions played an important role in the source of fatty acids at Qingpu and Lin'gang, and emissions of marine phytoplankton and microorganisms were also important for fatty acids at Lin'gang. Coal combustion and motor vehicle exhaust made an important contribution to PAHs according to an analysis of diagnostic ratios. This study presented the characteristics and sources of POM in summertime Shanghai, which facilitates the development of an effective control strategy on PM2.5 pollution.

17.
Huan Jing Ke Xue ; 38(7): 2738-2746, 2017 Jul 08.
Artigo em Zh | MEDLINE | ID: mdl-29964612

RESUMO

Based on site investigation of non-road vehicles in Shanghai and Hangzhou located in east China, non-road vehicle emission inventory in 2014 was established in these cities as well as its emission inventory technology. Characteristics of non-road vehicle were also analyzed, including classification, type of fuel, power and emission standard. The results showed that diesel consumed by non-road vehicles was 6.1×105 t in Shanghai and 3.2×105 t in Hangzhou; NOx emission was 3.09×104 t in Shanghai and 1.72×104 t in Hangzhou; PM2.5 emission was 1.41×103 t in Shanghai and 8.1×102 t in Hangzhou, 2014. Emissions from excavators and other construction equipment contributed the most in non-road vehicle emission inventory. Non-road vehicle has become one of the important sources of urban air pollution, whose NOx emissions accounted for 11.1% of all urban sources in Shanghai and 16.1% in Hangzhou, and accounted for 18.5% of mobile sources in Shanghai and 32.2% in Hangzhou.

18.
Huan Jing Ke Xue ; 37(4): 1179-87, 2016 Apr 15.
Artigo em Zh | MEDLINE | ID: mdl-27548936

RESUMO

Intensive haze shrouded central and eastern parts of China in Dec. 2013. In this study, the mass concentrations of gaseous and particulate pollutants, and also the chemical compositions of fine particulate matters were obtained based on in-situ measurement in Shanghai urban area. The characteristics of PM2.5 were investigated during different pollution episodes, including dust, haze, fog-haze and long-rang transport episodes. The results showed that pollution was most serious during the fog-haze episode, during which the maximum daily mass concentrations of PM10 and PM2.5 reached 536 microg x m(-3) and 411 microg x m(-3), respectively. During the fog-haze episode, the ratio of PM2.5 to PM10 was over 76.7%, suggesting that high humidity enhanced the secondary formation of NO3-, SO4(2-) and NH4+ in PM2.5. Highest concentration of Ca2+ in PM2.5 occurred during the dust episode and the proportion of primary components in PM2.5 increased obviously. Highest concentration of SO2- was observed in PM25 during the long-range transport episode, with a fast growth rate. Meanwhile, the trajectories reaching Shanghai urban area and cluster analysis during different pollution episodes were simulated by HYSPLIT model. Combined with observation data of PM2.5 in Shanghai urban area, chemical characteristics of PM2.5 in different clusters and potential source apportionment of various pollution episodes were also studied in this study. The result revealed that the air trajectories could be grouped into six clusters based on their spatial similarities. Among these clusters, cluster6 which moved fast was associated with clean air. Cluster2 and cluster3 originating from Mongolia region had strong correlations to dust pollution, along with low PM2.5/PM10 ratio and high concentration of Ca2+ in PM2.5. Compared with other clusters, cluster5 and cluster4 with slow moving speed were more favorable for reactions between particulate species and formation of secondary pollutants during transport. Additionally, the stagnant weather condition under these two clusters with high water vapor when passing over the East China Sea further led to the aggravation of atmospheric pollution in Shanghai.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Material Particulado/análise , China , Poeira , Modelos Teóricos , Tempo (Meteorologia)
19.
Huan Jing Ke Xue ; 36(1): 1-10, 2015 Jan.
Artigo em Zh | MEDLINE | ID: mdl-25898640

RESUMO

With the fast development of urbanization, industrialization and mobilization, the air pollutant emissions with photochemical reactivity become more obvious, causing a severe photochemical pollution with the characteristics of high ozone concentration. However, the ozone source identification is very complicated due to the high non linearity between ozone and its precursors. Thus, ways to reduce ozone is still not clear. A high ozone pollution episode occurred during July, 2013, which lasted for a long period, with large influence area and high intensity. In this paper, we selected this episode to do a case study with the application of ozone source apportionment technology(OSAT) coupled within the CAMx air quality model. In this study, 4 source regions(including Shanghai, north Zhejiang, South Jiangsu and long range transport), 7 source categories (including power plants, industrial process, industrial boilers and kilns, residential, mobile source, volatile source and biogenic emissions) are analyzed to study their contributions to surface O3 in Shanghai, Suzhou and Zhejiang. Results indicate that long range transport contribution to the surface ozone in the YRD is around 20 x 10(-9) - 40 x 10(-9) (volume fraction). The O3 concentrations can increased to 40 x 10(-9) - 100 x 10(-9) (volume fraction) due to precursors emissions in Shanghai, Jiangsu and Zhejiang. As for the regional contribution to 8 hour ozone, long range transport constitutes 42.79% +/- 10.17%, 48.57% +/- 9.97% and 60.13% +/- 7.11% of the surface ozone in Shanghai, Suzhou and Hangzhou, respectively. Regarding the high O3 in Shanghai, local contribution is 28.94% +/- 8.49%, north Zhejiang constitutes 19.83% +/- 10.55%. As for surface O3 in Suzhou, the contribution from south Jiangsu is 26.41% +/- 6.80%. Regarding the surface O3 in Hangzhou, the major regional contributor is north Zhejiang (29.56% +/- 8.33%). Contributions from the long range transport to the daily maximum O3 concentrations are slightly lower than those to the 8-hourly O3, with the contribution of 35.35%-58.04%, while local contributions increase. As for the contributions from source sectors, it is found that the major source contributors include industrial boilers and kilns (18.4%-21.11%), industrial process (19.85%-28.46%), mobile source (21.30%-23.51%), biogenic (13.01%-17.07%) and power plants (7.08%-9.75%). Thus, industrial combustion, industrial processes, and mobile source are major anthropogenic sources of high ozone pollution in summer in the YRD region.


Assuntos
Poluentes Atmosféricos/análise , Ozônio/análise , China , Cidades , Monitoramento Ambiental , Indústrias , Modelos Teóricos , Centrais Elétricas , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA