Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(17): 11592-11598, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38630123

RESUMO

Cocrystal screening and single-crystal growth remain the primary obstacles in the development of pharmaceutical cocrystals. Here, we present a new approach for cocrystal screening, microspacing in-air sublimation (MAS), to obtain new cocrystals and grow high-quality single crystals of cocrystals within tens of minutes. The method possesses the advantages of strong designable ability of devices, user-friendly control, and compatibility with materials, especially for the thermolabile molecules. A novel drug-drug cocrystal of favipiravir (FPV) with salicylamide (SAA) was first discovered by this method, which shows improved physiochemical properties. Furthermore, this method proved effective in cultivating single crystals of FPV-isonicotinamide (FPV-INIA), FPV-urea, FPV-nicotinamide (FPV-NIA), and FPV-tromethamine (FPV-Tro) cocrystals, and the structures of these cocrystals were determined for the first time. By adjusting the growth temperature and growth distance precisely, we also achieved single crystals of 10 different paracetamol (PCA) cocrystals and piracetam (PIR) cocrystals, which underscores the versatility and efficiency of this method in pharmaceutical cocrystal screening.


Assuntos
Amidas , Cristalização , Niacinamida , Pirazinas , Niacinamida/química , Pirazinas/química , Amidas/química , Salicilamidas/química , Ureia/química , Modelos Moleculares , Cristalografia por Raios X
2.
Small ; : e2401624, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773869

RESUMO

The poor machinability of halide perovskite crystals severely hampered their practical applications. Here a high-throughput growth method is reported for armored perovskite single-crystal fibers (SCFs). The mold-embedded melt growth (MEG) method provides each SCF with a capillary quartz shell, thus guaranteeing their integrality when cutting and polishing. Hundreds of perovskite SCFs, exemplified by CsPbBr3, CsPbCl3, and CsPbBr2.5I0.5, with customized dimensions (inner diameters of 150-1000 µm and length of several centimeters), are grown in one batch, with all the SCFs bearing homogeneity in shape, orientation, and optical/electronic properties. Versatile assembly protocols are proposed to directly integrate the SCFs into arrays. The assembled array detectors demonstrated low-level dark currents (< 1 nA) with negligible drift, low detection limit (< 44.84 nGy s-1), and high sensitivity (61147 µC Gy-1 cm-2). Moreover, the SCFs as isolated pixels are free of signal crosstalk while showing uniform X-ray photocurrents, which is in favor of high spatial resolution X-ray imaging. As both MEG and the assembly of SCFs involve none sophisticated processes limiting the scalable fabrication, the strategy is considered to meet the preconditions of high-throughput productions.

3.
Small ; 19(10): e2205959, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36564359

RESUMO

Metal-free 2D phosphorus-based materials are emerging catalysts for ammonia (NH3 ) production through a sustainable electrochemical nitrogen reduction reaction route under ambient conditions. However, their efficiency and stability remain challenging due to the surface oxidization. Herein, a stable phosphorus-based electrocatalyst, silicon phosphide (SiP), is explored. Density functional theory calculations certify that the N2 activation can be realized on the zigzag Si sites with a dimeric end-on coordinated mode. Such sites also allow the subsequent protonation process via the alternating associative mechanism. As the proof-of-concept demonstration, both the crystalline and amorphous SiP nanosheets (denoted as C-SiP NSs and A-SiP NSs, respectively) are obtained through ultrasonic exfoliation processes, but only the crystalline one enables effective and stable electrocatalytic nitrogen reduction reaction, in terms of an NH3 yield rate of 16.12 µg h-1  mgcat. -1 and a Faradaic efficiency of 22.48% at -0.3 V versus reversible hydrogen electrode. The resistance to oxidization plays the decisive role in guaranteeing the NH3 electrosynthesis activity for C-SiP NSs. This surface stability endows C-SiP NSs with the capability to serve as appealing electrocatalysts for nitrogen reduction reactions and other promising applications.

4.
Phys Chem Chem Phys ; 25(17): 12401-12408, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37092794

RESUMO

Triethylamine (TEA) is an effective medium for inhibiting dye aggregation and improving the luminescence of dye-sensitized lanthanide-doped upconversion nanoparticles (UCNPs). However, excessive TEA will cause quenching of upconversion luminescence. In this paper, the possible mechanism of TEA affecting upconversion luminescence is discussed. It is found that TEA can enhance the nucleophilicity of the solvent, leading to dye shedding from the nanoparticles. Reducing the dielectric constant of the solvent can make TEA play a more positive role in upconversion luminescence and photostability of dye-sensitized UCNPs. When heptanol is selected as the solvent for CyBSO-sensitized ß-NaYF4:20%Yb3+,2%Er3+ (UNs), TEA can increase the upconversion luminescence by 6.0 times relative to that in methanol. More importantly, the optimal content of TEA in heptanol is 3700 times more than that in methanol. Under the action of large amounts of TEA in heptanol, a novel upconversion nanoprobe for detecting ascorbic acid is developed with a limit of detection of 0.103 µM and high selectivity over potential interfering species. Meanwhile, the high concentration of TEA in heptanol can improve the photostability of CyBSO-sensitized UNs by 10.4 times, which is of paramount importance for the practical application of dye-sensitized UCNPs.

5.
Angew Chem Int Ed Engl ; 62(50): e202315817, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37885150

RESUMO

Inorganic Bi-based perovskites have shown great potential in X-ray detection for their large absorption to X-rays, diverse low-dimensional structures, and eco-friendliness without toxic metals. However, they suffer from poor carrier transport properties compared to Pb-based perovskites. Here, we propose a mixed-halogen strategy to tune the structural dimensions and optoelectronic properties of Cs3 Bi2 I9-n Brn (0≤n≤9). Ten centimeter-sized single crystals are successfully grown by the Bridgman technique. Upon doping bromine to zero-dimensional Cs3 Bi2 I9 , the crystal transforms into a two-dimensional structure as the bromine content reaches Cs3 Bi2 I8 Br. Correspondingly, the optoelectronic properties are adjusted. Among these crystals, Cs3 Bi2 I8 Br exhibits negligible ion migration, moderate resistivity, and the best carrier transport capability. The sensitivities in 100 keV hard X-ray detection are 1.33×104 and 1.74×104  µC Gyair -1 cm-2 at room temperature and 75 °C, respectively, which are the highest among all reported bismuth perovskites. Moreover, the lowest detection limit of 28.6 nGyair s-1 and ultralow dark current drift of 9.12×10-9  nA cm-1 s-1 V-1 are obtained owing to the high ionic activation energy. Our work demonstrates that Br incorporation is an effective strategy to enhance the X-ray detection performance by tuning the dimensional and optoelectronic properties.

6.
Angew Chem Int Ed Engl ; 62(19): e202302435, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36892282

RESUMO

Perovskite single crystals and polycrystalline films have complementary merits and deficiencies in X-ray detection and imaging. Herein, we report preparation of dense and smooth perovskite microcrystalline films with both merits of single crystals and polycrystalline films through polycrystal-induced growth and hot-pressing treatment (HPT). Utilizing polycrystalline films as seeds, multi-inch-sized microcrystalline films can be in situ grown on diverse substrates with maximum grain size reaching 100 µm, which endows the microcrystalline films with comparable carrier mobility-lifetime (µτ) product as single crystals. As a result, self-powered X-ray detectors with impressive sensitivity of 6.1×104  µC Gyair -1 cm-2 and low detection limit of 1.5 nGyair s-1 are achieved, leading to high-contrast X-ray imaging at an ultra-low dose rate of 67 nGyair s-1 . Combining with the fast response speed (186 µs), this work may contribute to the development of perovskite-based low-dose X-ray imaging.

7.
Opt Express ; 30(25): 44617-44627, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36522883

RESUMO

In this paper, Ti3C2Tx MXene prepared by LiF/HCl etching method was spin-coated on glass substrate and sapphire substrate as the saturable absorber (SA), and the MXene SA is combined with Yb: LuAG single crystal fiber (SCF) for the first time to achieve a 1.05 µm passively Q-switched pulsed laser output with the average power, pulse width, and repetition frequency of 1.989 W, 149.6 ns, and 365.44 kHz, respectively, which is the highest average power ever reported for passively Q-switched SCF pulsed lasers. This work enriches the research on SCF pulsed lasers and provides a feasible approach for achieving high-power all-solid-state pulsed lasers.

8.
Opt Lett ; 47(18): 4624-4627, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36107048

RESUMO

In this Letter, the spontaneous Raman spectra of a novel, to the best of our knowledge, crystal α-BaTeW2O9 (α-BTW) are characterized and analyzed. The relative Raman gain coefficient of the α-BTW crystal is calculated to be 0.84 times that of YVO4. With a 35-mm-long crystal, the first-order Raman laser of α-BTW operating at 1178 nm is realized. The simple external resonator setup is employed in the first-order Raman laser of α-BTW. The pump source is a lamp-pumped electric-optical Q switched Nd:YAG laser amplifier system operating at 1064 nm with a pulse width of 10 ns. The Raman laser exhibits a threshold of 14.7 MW/cm2. In our experiments, a maximum pulse energy of 21.5 mJ is obtained with an optical-to-optical conversion efficiency and slope efficiency of 43.6%, 57.9%, respectively. Due to its high laser damage threshold, relative high Raman gain coefficient, and excellent thermal properties, the α-BTW crystal is a potential Raman material.

9.
Appl Opt ; 60(35): 10838-10842, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-35200844

RESUMO

In this work, a novel, to the best of our knowledge, α-BaTeMo2O9 crystal-based acousto-optical modulator is designed and successfully applied in actively Q-switched and mode-locked Er-doped fiber lasers (EDFLs) and Yb-doped fiber lasers (YDFLs) operating at 1.5 and 1.0 µm. The shortest pulse width of 429 ns and 1.37 µs are obtained in actively Q-switched EDFLs and YDFLs, respectively. For actively mode-locked operation, a pulse width of 11.32 ns at a modulation frequency of 3.19 MHz is obtained in EDFLs, while it is 29.9 ns at 1.036 MHz in YDFLs. The results indicate that the α-BaTeMo2O9 crystal is a promising candidate for all-fiber active modulators.

10.
Angew Chem Int Ed Engl ; 60(43): 23320-23326, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34460137

RESUMO

Oxide crystals have been widely used in nonlinear optics (NLO) in the ultraviolet-visible and near-infrared regions. Most traditional oxide crystals are restricted to the mid-infrared region due to their narrow transmission window. Hence, attempting to extend infrared cutoff wavelength of oxides has attracted much attention. Herein, we report two new tellurates Li2 TiTeO6 (LTT) and Li2 SnTeO6 (LST) with broad transparent regions of 0.38-6.72 and 0.38-6.86 µm, respectively, as excellent candidates for mid-infrared NLO applications. Both LTT and LST crystallize in the orthorhombic space group Pnn2. The LTT crystal exhibits intense powder second-order generation efficiency (26×KDP) under the fundamental wavelength of 1064 nm. First-principles calculations and dipole moments were used to illustrate the results of the powder second-harmonic generations based on the crystal structures. Our results provide a novel oxide NLO crystal with a strong SHG and wide transparency range. They also pave a way for the design of new oxide mid-IR NLO crystals.

11.
Opt Lett ; 45(18): 5061-5064, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32932453

RESUMO

A new generation of orthogonally polarized dual-wavelength lasers was demonstrated using a dye mode-locked neodymium-doped yttrium aluminum garnet laser for the first time. With a hexagonal Cs2TeMo3O12 as the Raman medium, efficient dual-wavelength stimulated Raman scattering was obtained at 1175 and 1154 nm with similar output power, corresponding to the stretching vibration of Mo-O and the asymmetric stretching vibrations of Mo-O and Te-O groups, respectively. The power ratio of two Raman components can be flexibly adjusted by tuning the polarization of the incident laser, which can be tuned from 0% to 100%. Laser sources with such a small wavelength separation could prove interesting for the difference-frequency generation of terahertz waves in the 4.6 THz range. Our study provides a simple and flexible method to achieve a promising dual-wavelength laser source in orthogonal polarization by Raman-based nonlinear frequency conversions.

12.
Phys Chem Chem Phys ; 22(38): 21776-21783, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32966363

RESUMO

Molybdenum disulfide (MoS2) is one of the two-dimensional layered semiconductor transition metal dichalcogenides (TMDCs) with great potential in electronics, optoelectronics, and spintronic devices. Sulfur vacancies in MoS2 are the most prevalent defects. However, the effect of sulfur vacancies on the electronic structure of MoS2 is still in dispute. Here we experimentally and theoretically investigated the effect of sulfur vacancies in MoS2. The vacancies were intentionally introduced by thermal annealing of MoS2 crystals in a vacuum environment. Angle-resolved photoemission spectroscopy (ARPES) was used directly to observe the electronic structure of the MoS2 single crystals. The experimental result distinctly revealed the appearance of an occupied defect state just above the valence band maximum (VBM) and an upward shift of the VBM after creating sulfur vacancies. In addition, density functional theory (DFT) calculations also confirmed the existence of the occupied defect state close to the VBM as well as two deep unoccupied states induced by the sulfur vacancies. Our results provide evidence to contradict that sulfur vacancies indicate the origin of n-type behaviour in MoS2. This work provides a rational strategy for tuning the electronic structures of MoS2.

13.
Angew Chem Int Ed Engl ; 59(17): 6909-6914, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32030861

RESUMO

1,4-butanediamine (BEA) is incorporated into FASnI3 (FA=formamidinium) to develop a series of lead-free low-dimensional Dion-Jacobson-phase perovskites, (BEA)FAn-1 Snn I3n+1 . The broadness of the (BEA)FA2 Sn3 I10 band gap appears to be influenced by the structural distortion owing to high symmetry. The introduction of BEA ligand stabilizes the low-dimensional perovskite structure (formation energy ca. 106  j mol-1 ), which inhibits the oxidation of Sn2+ . The compact (BEA)FA2 Sn3 I10 dominated film enables a weakened carrier localization mechanism with a charge transfer time of only 0.36 ps among the quantum wells, resulting in a carrier diffusion length over 450 nm for electrons and 340 nm for holes, respectively. Solar cell fabrication with (BEA)FA2 Sn3 I10 delivers a power conversion efficiency (PCE) of 6.43 % with negligible hysteresis. The devices can retain over 90 % of their initial PCE after 1000 h without encapsulation under N2 environment.

14.
Inorg Chem ; 58(12): 7794-7802, 2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31002241

RESUMO

Transition-metal tellurites have motivated growing research interest in both fundamental and applied chemistry, and the corresponding single crystals could serve as rich and fascinating platforms to regulate, explore, and elucidate the intrinsic characteristics of different structures from 0D to 3D architectures. In this context, a zirconium tellurite (namely, ZrTe3O8) single crystal featuring a 3D distorted fluorite-type structure with a size of 35 × 32 × 21 mm3 was successfully harvested by the top-seeded solution growth (TSSG) technique. The X-ray diffraction rocking curve reflects that the crystallinity of the as-grown ZrTe3O8 crystal is quite perfect with a small full-width at half-maximum (fwhm) value (∼39 arcsec). The temperature dependence of the thermophysical properties of the ZrTe3O8 single crystal has been systematically analyzed. The ZrTe3O8 single crystal exhibits a wide transparency window, as the UV and IR absorption cutoff edges are respectively 278 and 7788 nm. The refractive indices over the region from the visible to the near-IR have been determined and manifested relatively large values of 2.0889-2.0370 over a wavelength range of 632.8-1553 nm. Furthermore, the fundamental physical characteristics of the ZrTe3O8 single crystal associated with its distinctive 3D framework structure have been evaluated with density functional theory (DFT) calculations.

15.
J Am Chem Soc ; 140(40): 13089-13096, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30212626

RESUMO

With existing and emerging technologies urgently demanding the expansion of the laser wavelengths, high-performance nonlinear optical (NLO) crystals are becoming indispensable. Here, a prospective NLO crystal, Li2ZrTeO6, is rationally designed by the element substitution of Nb for Zr and Te from LiNbO3, which has been recognized as one of the most commercial NLO crystals. Li2ZrTeO6 with R3 symmetry inherits the structural merits of LiNbO3 (space group R3 c) and thus meets the requirements for NLO applications, including noncentrosymmetric crystal structure, moderate birefringence, and phase-matchability. Moreover, it can be exploited to achieve more outstanding optical damage resistant behavior (>1.3 GW cm-2), exceeding 22 times that of LiNbO3, which is more suitable for high-energy laser applications. Notably, this compound displays the widest IR absorption edge (7.4 µm) among all of the noncentrosymmetric tellurates reported so far. These excellent attributes suggest that Li2ZrTeO6 is a promising candidate for providing high NLO performance. The substitution of Nb for Zr and Te from LiNbO3 demonstrates a viable strategy toward the rational design of NLO crystals with anticipated properties.

16.
Angew Chem Int Ed Engl ; 57(7): 1928-1932, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29316076

RESUMO

Singlet-triplet conversion in organic light-emitting materials introduces non-emissive (dark) and long-lived triplet states, which represents a significant challenge in constraining the optical properties. There have been considerable attempts at separating singlets and triplets in long-chain polymers, scavenging triplets, and quenching triplets with heavy metals; nonetheless, such triplet-induced loss cannot be fully eliminated. Herein, a new strategy of crafting a periodic molecular barrier into the π-conjugated matrices of organic aromatic fluorophores is reported. The molecular barriers effectively block the singlet-to-triplet pathway, resulting in near-unity photoluminescence quantum efficiency (PLQE) of the organic fluorophores. The transient optical spectroscopy measurements confirm the absence of the triplet absorption. These studies provide a general approach to preventing the formation of dark triplet states in organic semiconductors and bring new opportunities for the development of advanced organic optics and photonics.

17.
Angew Chem Int Ed Engl ; 57(45): 14868-14872, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30251460

RESUMO

An intriguing reversible band gap narrowing behavior of the lead-free hybrid perovskite single crystal DMASnI3 (DMA=CH3 NH2 CH3 + ) from yellow to black is observed without phase transformation. We discuss the transformation mechanism in detail. More interestingly, the transformed samples in black can rapidly self-heal into yellow ones when exposed to deionized water (DI water). Contrary to other hybrid perovskites, DMASnI3 crystals exhibit excellent water phase stability. For example, DMASnI3 was immersed in DI water for 16 h and no decomposition was observed. Inspired by its excellent water phase stability, we demonstrate a potential eco-friendly application of DMASnI3 in photo-catalysis for H2 evolution in DI water. We present the first H2 evolution rate of 0.64 µmol h-1 with good recycling properties for pure DMASnI3 crystals. After the narrowing process, the optical band gap of DMASnI3 can be lowered from 2.48 eV to 1.32 eV. Systematical characterizations are applied to investigate their structures and optoelectronic properties. The reversible band gap narrowing behavior and outstanding electrical properties, such as higher carrier mobility and long carrier lifetime show that DMASnI3 has a great potential for optoelectronic applications.

18.
Opt Express ; 25(21): 24893-24900, 2017 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-29041162

RESUMO

The high efficiency acousto-optic modulators become indispensable in photonics and optoelectronics for the pulse generation and signal modulation in optical display and telecommunications. In this paper, the validity and feasibility of the biaxial crystals as acousto-optic mediums have been theoretically analyzed and confirmed by experiments using a biaxial crystal of ß-BaTeMo2O9. The diffraction angle and diffraction efficiency of the ß-BaTeMo2O9 acousto-optic Q-switch are determined to be 1.420° and 78.1%, which are comparable with that of TeO2 acousto-optic modulator at the identical operating wavelength of 1064 nm and 100 MHz, respectively. The minimum of the modulated pulse width can be achieved to be 6 ns at 5 kHz with Nd:YVO4 as the gain medium. The results not only provide an excellent acousto-optic medium, but also explore the field of biaxial acousto-optic medium for device fabrications.

19.
Opt Express ; 25(11): 12860-12866, 2017 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-28786638

RESUMO

A picosecond (ps) mid-infrared (MIR) optical parametric amplifier (OPA) with LiInSe2 crystal was demonstrated for the first time. The MIR OPA was pumped by a 30 ps 1064 nm Nd:YAG laser and injected by a barium boron oxide (BBO)-based widely tunable near-infrared seed. A maximum idler pulse energy of 433 µJ at 4 µm has been obtained under a pump energy of 17 mJ, and the corresponding pulse duration was estimated to be ~13 ps. To our knowledge, this is the highest single pulse energy generated by LiInSe2 crystal. Furthermore, an idler spectrum tuning from 3.6 to 4.8 µm was investigated at fixed pump energy of 15 mJ.

20.
Opt Lett ; 42(11): 2098-2101, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28569854

RESUMO

Mid-infrared (MIR) nonlinear optical crystals of LiInSe2 (LISe) were grown by a modified Bridgman technique on a (001)-seed. A 7-12 µm widely tunable picosecond (ps) MIR optical parametric amplifier (OPA) based on a LISe crystal was demonstrated for the first time, to the best of our knowledge. The MIR OPA was pumped by a 30 ps 1064 nm Nd:YAG laser and injected by a KTiOPO4 (KTP)-based widely tunable near-infrared seed. The idler operating at 7.5 µm with the highest pulse energy of 170 µJ was obtained under a pump energy of 14 mJ. The corresponding energy conversion efficiency is ∼1.21%, and the photon conversion efficiency is 8.6%. The output energies were measured to be ∼121 µJ at 7 µm and ∼21 µJ at 12 µm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA