Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Transgenic Res ; 33(3): 131-147, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38739244

RESUMO

Δ1-pyrroline-5-carboxylate synthetase (P5CS) is one of the key regulatory enzymes involved in the proline biosynthetic pathway. Proline acts as an osmoprotectant, molecular chaperone, antioxidant, and regulator of redox homeostasis. The accumulation of proline during stress is believed to confer tolerance in plants. In this study, we cloned the complete CDS of the P5CS from pearl millet (Pennisetum glaucum (L.) R.Br. and transformed into tobacco. Three transgenic tobacco plants with single-copy insertion were analyzed for drought and heat stress tolerance. No difference was observed between transgenic and wild-type (WT) plants when both were grown in normal conditions. However, under heat and drought, transgenic plants have been found to have higher chlorophyll, relative water, and proline content, and lower malondialdehyde (MDA) levels than WT plants. The photosynthetic parameters (stomatal conductance, intracellular CO2 concentration, and transpiration rate) were also observed to be high in transgenic plants under abiotic stress conditions. qRT-PCR analysis revealed that the expression of the transgene in drought and heat conditions was 2-10 and 2-7.5 fold higher than in normal conditions, respectively. Surprisingly, only P5CS was increased under heat stress conditions, indicating the possibility of feedback inhibition. Our results demonstrate the positive role of PgP5CS in enhancing abiotic stress tolerance in tobacco, suggesting its possible use to increase abiotic stress-tolerance in crops for sustained yield under adverse climatic conditions.


Assuntos
Secas , Nicotiana , Plantas Geneticamente Modificadas , Prolina , Estresse Fisiológico , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Nicotiana/genética , Nicotiana/metabolismo , Estresse Fisiológico/genética , Prolina/metabolismo , Pennisetum/genética , Pennisetum/metabolismo , Regulação da Expressão Gênica de Plantas , Fotossíntese/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Clorofila/metabolismo
2.
Plant Cell Physiol ; 61(8): 1449-1463, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32502248

RESUMO

The present study reports profiling of the elevated carbon dioxide (CO2) concentration responsive global transcriptome in chickpea, along with a combinatorial approach for exploring interlinks between physiological and transcriptional changes, important for the climate change scenario. Various physiological parameters were recorded in two chickpea cultivars (JG 11 and KAK 2) grown in open top chambers under ambient [380 parts per million (ppm)] and two stressed/elevated CO2 concentrations (550 and 700 ppm), at different stages of plant growth. The elevated CO2 concentrations altered shoot and root length, nodulation (number of nodules), total chlorophyll content and nitrogen balance index, significantly. RNA-Seq from 12 tissues representing vegetative and reproductive growth stages of both cultivars under ambient and elevated CO2 concentrations identified 18,644 differentially expressed genes including 9,687 transcription factors (TF). The differential regulations in genes, gene networks and quantitative real-time polymerase chain reaction (qRT-PCR) -derived expression dynamics of stress-responsive TFs were observed in both cultivars studied. A total of 138 pathways, mainly involved in sugar/starch metabolism, chlorophyll and secondary metabolites biosynthesis, deciphered the crosstalk operating behind the responses of chickpea to elevated CO2 concentration.


Assuntos
Dióxido de Carbono/farmacologia , Cicer/metabolismo , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Cicer/efeitos dos fármacos , Cicer/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Nitrogênio/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/metabolismo , Transcriptoma
3.
Mol Biol Rep ; 43(8): 849-59, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27209581

RESUMO

Drought is a calamitous abiotic stress hampering agricultural productivity all over the world and its severity is likely to increase further. Abscisic acid-stress-ripening proteins (ASR), are a group of small hydrophilic proteins which are induced by abscisic acid, stress and ripening in many plants. In the present study, ZnAsr 1 gene was fully characterized for the first time from Ziziphus nummularia, which is one of the most low water forbearing plant. Full length ZnAsr 1 gene was characterised and in silico analysis of ZnASR1 protein was done for predicting its phylogeny and physiochemical properties. To validate transcriptional pattern of ZnAsr 1 in response to drought stress, expression profiling in polyethylene glycol (PEG) induced Z. nummularia seedlings was studied by RT-qPCR analysis and heterologous expression of the recombinant ZnAsr1 in Escherichia coli. The nucleotide sequence analysis revealed that the complete open reading frame of ZnAsr 1 is 819 bp long encoding a protein of 273 amino acid residues, consisting of a histidine rich N terminus with an abscisic acid/water deficit stress domain and a nuclear targeting signal at the C terminus. In expression studies, ZnAsr 1 gene was found to be highly upregulated under drought stress and recombinant clones of E. coli cells expressing ZnASR1 protein showed better survival in PEG containing media. ZnAsr1 was proven to enhance drought stress tolerance in the recombinant E.coli cells expressing ZnASR1. The cloned ZnAsr1 after proper validation in a plant system, can be used to develop drought tolerant transgenic crops.


Assuntos
Proteínas de Plantas/genética , Ziziphus/genética , Adaptação Fisiológica , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Desidratação/genética , Desidratação/metabolismo , Secas , Filogenia , Proteínas de Plantas/metabolismo , Plântula/genética , Plântula/metabolismo , Análise de Sequência de DNA , Estresse Fisiológico , Transcriptoma , Ziziphus/metabolismo
4.
J Basic Microbiol ; 56(9): 999-1008, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27106067

RESUMO

Bacillus pumilus MTCC7615, a biocontrol agent isolated from rice rhizosphere was characterized to be antagonistic to Rhizoctonia solani, the pathogen causing sheath blight disease of rice. The phenazine-1-carboxylic acid gene (phc CD) of this bacterium was PCR amplified (1400 bp), cloned, and sequenced. The sequence analysis revealed the presence of two ORFs of phc CD gene commonly found in Pseudomonas species. The sequence showed 98% similarity to phc CD gene of the Pseudomonas isolate LBUM223 (DQ788993). The crude antibiotic extract from B. pumilus MTCC7615 was observed to inhibit mycelial growth of R. solani under in vitro conditions. The HPLC analysis of crude antibiotic extract from B. pumilus MTCC7615 confirmed the presence of phenazine. The study has also reported the presence of phc CD gene which is responsible for the synthesis of phenazine-1-carboxylic acid in B. pumilus. The ability of the bacterial isolate to control sheath blight disease in rice seedlings under in vivo conditions was confirmed by the pot culture experiment. The structural and functional genomics of phc C and phc D genes would lead to a better understanding of phenazine biosynthesis in B. pumilus for its efficient utilization in plant protection strategies.


Assuntos
Antibiose , Bacillus pumilus/genética , Bacillus pumilus/patogenicidade , Agentes de Controle Biológico , Controle Biológico de Vetores , Rhizoctonia/crescimento & desenvolvimento , Bacillus pumilus/isolamento & purificação , Sequência de Bases , DNA Bacteriano/genética , Micélio/crescimento & desenvolvimento , Fases de Leitura Aberta/genética , Oryza/microbiologia , Fenazinas/metabolismo , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase , Rizosfera , Análise de Sequência de DNA
5.
BMC Plant Biol ; 15: 90, 2015 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-25888001

RESUMO

BACKGROUND: Phytophthora blight caused by Phytophthora cajani is an emerging disease of pigeonpea (Cajanus cajan L.) affecting the crop irrespective of cropping system, cultivar grown and soil types. Current detection and identification methods for Phytophthora species rely primarily on cultural and morphological characteristics, the assessment of which is time-consuming and not always suitable. Sensitive and reliable methods for isolation, identification, zoospore production and estimating infection severity are therefore desirable in case of Phytophthora blight of pigeonpea. RESULTS: In this study, protocols for isolation and identification of Phytophthora blight of pigeonpea were standardized. Also the method for zoospore production and in planta infection of P. cajani was developed. Quantification of fungal colonization by P. cajani using real-time PCR was further standardized. Phytophthora species infecting pigeonpea was identified based on mycological characters such as growth pattern, mycelium structure and sporangial morphology of the isolates and confirmed through molecular characterization (sequence deposited in GenBank). For Phytophthora disease development, zoospore suspension of 1 × 10(5) zoospores per ml was found optimum. Phytophthora specific real-time PCR assay was developed using specific primers based on internal transcribed spacer (ITS) 1 and 2. Use of real-time PCR allowed the quantitative estimation of fungal biomass in plant tissues. Detection sensitivities were within the range of 0.001 pg fungal DNA. A study to see the effect of elevated CO2 on Phytophthora blight incidence was also conducted which indicated no significant difference in disease incidence, but incubation period delayed under elevated CO2 as compared to ambient level. CONCLUSION: The zoospore infection method for Phytophthora blight of pigeonpea will facilitate the small and large scale inoculation experiments and thus devise a platform for rapid and reliable screening against Phytophthora blight disease of pigeonpea. qPCR allowed a reliable detection and quantification of P. cajani in samples with low pathogen densities. This can be useful in early warning systems prior to potential devastating outbreak of the disease.


Assuntos
Cajanus/microbiologia , Dióxido de Carbono/metabolismo , Técnicas Microbiológicas/métodos , Phytophthora/isolamento & purificação , Doenças das Plantas/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Dados de Sequência Molecular , Filogenia , Phytophthora/genética , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA
6.
Indian J Exp Biol ; 53(8): 543-50, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26349318

RESUMO

Pearl millet (Pennisetum glaucum L. R. Br.) is an important cereal crop grown mainly in the arid and semi-arid regions of India known to possess the natural ability to withstand thermal stress. To elucidate the molecular basis of high temperature response in pearl millet, 12 days old seedlings of P. glaucum cv. 841A were subjected to heat stress at 46 degrees C for different time durations ( 30 min, 2, 4, 8, 12 and 24 h) and a forward subtractive cDNA library was constructed from pooled RNA of heat stressed seedlings. A total of 331 high quality Expressed Sequence Tags (ESTs) were obtained from randomly selected 1050 clones. Sequences were assembled into 103 unique sequences consisting of 37 contigs and 66 singletons. Of these, 92 unique sequences were submitted to NCBI dbEST database. Gene Ontology through RGAP data base and BLASTx analysis revealed that about 18% of the ESTs showed homology to genes for "response to abiotic and biotic stimulus". About 2% of the ESTs showed no homology with genes in dbEST, indicating the presence of uncharacterized candidate genes involved in heat stress response in P. glaucum. Differential expression of selected genes (hsp101 and CRT) from the SSH library were validated by qRT-PCR analysis. The ESTs thus generated are a rich source of heat stress responsive genes, which can be utilized in improving thermotolerance of other food crops.


Assuntos
Biblioteca Gênica , Resposta ao Choque Térmico/genética , Pennisetum/genética , Etiquetas de Sequências Expressas , Regulação da Expressão Gênica de Plantas , Temperatura Alta , Índia , Pennisetum/fisiologia , Plântula/genética , Plântula/fisiologia , Temperatura
7.
Arch Virol ; 157(3): 579-83, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22160128

RESUMO

The complete genome sequence of a mandarin (Citrus reticulata) decline CTV isolate, Kpg3, of the Darjeeling hills of the Northeastern Himalayan region of India is reported for the first time. The complete Kpg3 genome has 19253 nt, and its nucleotide sequence identity ranged from 79% with the Florida CTV isolate T36 to 94% with the Israel isolate VT, whereas its identity to B165, the other Indian isolate, was 89%. Phylogenetic analysis indicated that the Kpg3 genome is closely related to isolate VT and distantly to T36 and B165. Recombination analysis indicated that Kpg3 is recombinant and originated through multiple recombination events in which parts of the genome were exchanged between divergent CTV sequences.


Assuntos
Citrus/virologia , Closterovirus/genética , Closterovirus/isolamento & purificação , Genoma Viral , Doenças das Plantas/virologia , RNA Viral/genética , Análise de Sequência de DNA , Análise por Conglomerados , Genótipo , Índia , Dados de Sequência Molecular , Filogenia , Recombinação Genética
8.
Front Plant Sci ; 12: 653265, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149753

RESUMO

Dry root rot caused by the necrotrophic phytopathogenic fungus Rhizoctonia bataticola is an emerging threat to chickpea production in India. In the near future, the expected increase in average temperature and inconsistent rainfall patterns resultant of changing climatic scenarios are strongly believed to exacerbate the disease to epidemic proportions. The present study aims to quantify the collective role of temperature and soil moisture content (SMC) on disease progression in chickpea under controlled environmental conditions. In our study, we could find that both temperature and soil moisture played a decisive role in influencing the dry root rot disease scenario. As per the disease susceptibility index (DSI), a combination of high temperature (35°C) and low SMC (60%) was found to elicit the highest disease susceptibility in chickpea. High pathogen colonization was realized in chickpea root tissue at all time-points irrespective of genotype, temperature, and SMC. Interestingly, this was in contrast to the DSI where no visible symptoms were recorded in the roots or foliage during the initial time-points. For each time-point, the colonization was slightly higher at 35°C than 25°C, while the same did not vary significantly with respect to SMC. Furthermore, the differential expression study revealed the involvement of host defense-related genes like endochitinase and PR-3-type chitinase (CHI III) genes in delaying the dry root rot (DRR) disease progression in chickpea. Such genes were found to be highly active during the early stages of infection especially under low SMC.

9.
Front Genet ; 11: 862, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973868

RESUMO

Fusarium wilt (FW), caused by Fusarium udum Butler (FU), is among the challenging factors in the production of pigeonpea. Therefore, exploring a superior pigeonpea genotype from landraces or local cultivars through the selection of innate resistance to FW using different biological and molecular approaches, and validating its resistance response, could be an alternative to sustainable crop improvement. Five distinct pigeonpea genotypes, with resistant (ICP2894) and susceptible (ICP2376) controls, were selected on the basis of the incidence percentage of FW, from three different states of India. Among them, the cultivar Richa, which displayed low incidence of FW (10.0%) during the genotype evaluation, was further examined for its innate resistance to FW. Molecular characterization of antioxidant (AO) enzyme [APX and SOD] and pathogenesis-related (PR) protein [CHS and ß-1, 3-glucanase] families were performed. The obtained results of reverse transcription-polymerase chain reaction-based expression study and in silico analysis showed a higher level of induction of PR and AO genes, and the strong interaction of their putative proteins with fungal cellobiohydrolase-c protein established their antifungal activity, conferring early plant defense responses to FU in Richa. Our study demonstrated a strong and combinatorial approach involving biological assay, molecular experiments, and in silico analysis to identify a superior pigeonpea genotype that was resistant to FW across a major biogeographic region.

10.
3 Biotech ; 9(5): 180, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31058046

RESUMO

Agrobacterium mediated in planta method was used to transform Indian elite wheat genotype HD2894 with herbicide-tolerant CP4-EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) gene. The apical meristems of germinated seeds were targeted for introgression of transgene. The obtained T1 plants were screened by spraying 1% glyphosate and only positive transformants survived. The presence of transgene was also confirmed by PCR and Southern hybridization. Using this method, 3.07% transformation rate was observed. To identify transgenic lines carrying stably integrated CP4-EPSPS gene, the transgenic populations were screened in T3 generation using 1% glyphosate and lines with 100% survival were considered as homozygous. No significant morpho-physiological variations were observed within the transgenic lines as compared to non-transgenic plants. The present study resulted in herbicide-tolerant transgenic wheat and provides a valuable tool for development of wheat genetic transformation.

11.
Front Plant Sci ; 9: 1154, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30158943

RESUMO

Plants being sessile are under constant threat of multiple abiotic and biotic stresses within its natural habitat. A combined stress involving an abiotic and a biotic factor reportedly increases susceptibility of the plants to pathogens. The emerging threat, collar rot disease of chickpea (caused by Sclerotium rolfsii Sacc.) is reported to be influenced by soil moisture condition (SMC). Hence, we studied the influence of differential SMC viz. upper optimum (100%), optimum (80%), lower optimum (60%), and limiting (40%) soil moisture conditions on colonization and collar rot development over the course of infection in two chickpea cultivars, Annigeri (susceptible to collar rot) and ICCV 05530 (moderately resistant to collar rot). Disease incidence was found to be directly proportional to increase in soil moisture (R2 = 0.794). Maximum incidence was observed at 80% SMC, followed by 100 and 60% SMC. Expression of genes (qPCR analysis) associated with host cell wall binding (lectin) and degradation viz. endopolygalacturonase-2, endoglucosidase, and cellobiohydrolase during collar rot development in chickpea were relatively less at limiting soil moisture condition (40%) as compared to optimum soil moisture condition (80%). As compared to individual stress, the expression of defense response genes in chickpea seedlings were highly up-regulated in seedlings challenged with combined stress. Our qPCR results indicated that the expression of defense-related genes in chickpea during interaction with S. rolfsii at low SMC was primarily responsible for delayed disease reaction. Involvement of moisture and biotic stress-related genes in combined stress showed a tailored defense mechanism.

12.
Sci Rep ; 7: 42737, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-28218268

RESUMO

Dry root rot (DRR) caused by the fungus Rhizoctonia bataticola (Taub.) Butler, is an emerging disease in chickpea. The disease is often mistaken with other root rots like Fusarium wilt, collar rot and black root rot in chickpea. Therefore, its timely and specific detection is important. Current detection protocols are either based on mycological methods or on protocols involving DNA amplification by polymerase chain reaction (PCR). Here we report the rapid and specific detection of R. bataticola using loop-mediated isothermal amplification (LAMP) assay targeting fungal specific 5.8S rDNA sequence for visual detection of R. bataticola. The reaction was optimized at 63 °C for 75 min using minimum 10 fg of DNA. After adding SYBR Green I in LAMP products, the amplification was found to be highly specific in all the 94 isolates of R. bataticola collected from diverse geographical regions as well as DRR infected plants and sick soil. No reaction was found in other pathogenic fungi infecting chickpea (Fusarium oxysporum f. sp. ciceris, Rhizoctonia solani, Sclerotium rolfsii and Fusarium solani) and pigeonpea (Fusarium udum and Phytophthora cajani). The standardised LAMP assay with its simplicity, rapidity and specificity is very useful for the visual detection of this emerging disease in chickpea.


Assuntos
Cicer/microbiologia , Técnicas de Amplificação de Ácido Nucleico/métodos , Doenças das Plantas/microbiologia , RNA Ribossômico 5,8S/genética , Rhizoctonia/isolamento & purificação , DNA Fúngico/genética , DNA Ribossômico/genética , Raízes de Plantas/microbiologia , Rhizoctonia/genética , Sensibilidade e Especificidade , Microbiologia do Solo
13.
Sci Rep ; 6: 37353, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27853284

RESUMO

Vascular wilt caused by Fusarium oxysporum f. sp. ciceris (Foc) is a serious disease of chickpea (Cicer arietinum L.) accounting for approximately 10-15% annual crop loss. The fungus invades the plant via roots, colonizes the xylem vessels and prevents the upward translocation of water and nutrients. Infection is initiated by conidia that invade the host tissue often by penetration of intact epidermal cells. Here, we report the characterization of the transcriptome of Foc sequenced using Illumina Hiseq technology during its conidial germination at different time points. Genome-wide expression profiling revealed that genes linked to fungal development are transcribed in successive ways. Analysis showed that Foc have large sets of germination-related genes and families of genes encoding secreted effectors, cell wall/pectin-degrading enzymes, metabolism related enzymes, transporters and peptidases. We found that metabolism related enzymes are up-regulated at early time point whereas most transporters and secondary metabolites important for tissue colonization and pathogenicity are up-regulated later as evident from the qRT-PCR. The study demonstrated that early conidial germination in Foc is accompanied by rapid shifts in gene expression that prepare the fungus for germ tube outgrowth, host cell invasion and pathogenesis. This work lays the foundation for facilitating further research towards understanding this host-pathogen interaction.


Assuntos
Fusarium/genética , Doenças das Plantas/microbiologia , Esporos Fúngicos/genética , Fusarium/crescimento & desenvolvimento , Fusarium/metabolismo , Perfilação da Expressão Gênica , Ontologia Genética , Genoma Fúngico , Interações Hospedeiro-Patógeno , Redes e Vias Metabólicas , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/metabolismo , Transcriptoma , Virulência
14.
Indian J Virol ; 24(1): 35-41, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24426255

RESUMO

The present study for the first time describes biological and molecular characterization of Citrus tristeza virus (CTV) occurring in the Terai area of Uttarakhand State in Northern Himalaya region of India. Direct antigen coated-ELISA and reverse transcriptase-polymerase chain reaction (RT-PCR) detected the CTV infection in Acid lime cv. Pant lemon (Citrus aurantifolia) orchards of Pantnagar with an estimated disease incidence of 16.6-20.5 %. To know the biological and genetic properties, an isolate, CTV Pant 4 was characterized. Isolate Pant 4 could be graft transmitted to Kinnow, Nagpur and Darjeeling mandarins, Mosambi sweet orange, Kagzi lime, Sweet lime, Sour orange but not to Rough lemon. The sequence analyses of the 5'ORF1a (3038 nucleotides) of LPro domain and 3'end (2058 nt) covering ORF7-ORF10 regions of the CTV genome revealed that Pant 4 was closely related to the previously reported Indian CTV isolate, Kpg3 from Northeastern Himalaya region with 97 and 98 % sequence identity, respectively. Whereas, it differed from the previously reported CTV isolate B165 from Southern India with 79 and 92 % identity, respectively for 5'ORF1a and 3' end regions. Recombination and SplitsTree decomposition analyses indicated that CTV isolate Pant 4 was a recombinant isolate originating from Kpg3 as a major and B165 as a minor donor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA