Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37569542

RESUMO

Spontaneous or induced DNA lesions can result in stable gene mutations and chromosomal aberrations due to their inaccurate repair, ultimately resulting in phenotype changes. Some DNA lesions per se may interfere with transcription, leading to temporary phenocopies of mutations. The direct impact of primary DNA lesions on phenotype before their removal by repair is not well understood. To address this question, we used the alpha-test, which allows for detecting various genetic events leading to temporary or hereditary changes in mating type α→a in heterothallic strains of yeast Saccharomyces cerevisiae. Here, we compared yeast strains carrying mutations in DNA repair genes, mismatch repair (pms1), base excision repair (ogg1), and homologous recombination repair (rad52), as well as mutagens causing specific DNA lesions (UV light and camptothecin). We found that double-strand breaks and UV-induced lesions have a stronger effect on the phenotype than mismatches and 8-oxoguanine. Moreover, the loss of the entire chromosome III leads to an immediate mating type switch α→a and does not prevent hybridization. We also evaluated the ability of primary DNA lesions to persist through the cell cycle by assessing the frequency of UV-induced inherited and non-inherited genetic changes in asynchronous cultures of a wild-type (wt) strain and in a cdc28-4 mutant arrested in the G1 phase. Our findings suggest that the phenotypic manifestation of primary DNA lesions depends on their type and the stage of the cell cycle in which it occurred.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Reparo do DNA/genética , Ciclo Celular , DNA/metabolismo
2.
Genetics ; 218(2)2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-33844024

RESUMO

Current eukaryotic replication models postulate that leading and lagging DNA strands are replicated predominantly by dedicated DNA polymerases. The catalytic subunit of the leading strand DNA polymerase ε, Pol2, consists of two halves made of two different ancestral B-family DNA polymerases. Counterintuitively, the catalytically active N-terminal half is dispensable, while the inactive C-terminal part is required for viability. Despite extensive studies of yeast Saccharomyces cerevisiae strains lacking the active N-terminal half, it is still unclear how these strains survive and recover. We designed a robust method for constructing mutants with only the C-terminal part of Pol2. Strains without the active polymerase part show severe growth defects, sensitivity to replication inhibitors, chromosomal instability, and elevated spontaneous mutagenesis. Intriguingly, the slow-growing mutant strains rapidly accumulate fast-growing clones. Analysis of genomic DNA sequences of these clones revealed that the adaptation to the loss of the catalytic N-terminal part of Pol2 occurs by a positive selection of mutants with improved growth. Elevated mutation rates help generate sufficient numbers of these variants. Single nucleotide changes in the cell cycle-dependent kinase gene, CDC28, improve the growth of strains lacking the N-terminal part of Pol2, and rescue their sensitivity to replication inhibitors and, in parallel, lower mutation rates. Our study predicts that changes in mammalian homologs of cyclin-dependent kinases may contribute to cellular responses to the leading strand polymerase defects.


Assuntos
Proteína Quinase CDC28 de Saccharomyces cerevisiae/genética , Proteína Quinase CDC28 de Saccharomyces cerevisiae/metabolismo , DNA Polimerase II/genética , Replicação do DNA , Saccharomyces cerevisiae/genética , DNA Polimerase II/metabolismo , DNA Fúngico , Genoma Fúngico , Mutagênese , Taxa de Mutação , Polimorfismo de Nucleotídeo Único , Saccharomyces cerevisiae/enzimologia , Seleção Genética
3.
J Mol Biol ; 392(3): 602-13, 2009 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-19631656

RESUMO

Sanitization of the cellular nucleotide pools from mutagenic base analogues is necessary for the accuracy of transcription and replication of genetic material and plays a substantial role in cancer prevention. The undesirable mutagenic, recombinogenic, and toxic incorporation of purine base analogues [i.e., ITP, dITP, XTP, dXTP, or 6-hydroxylaminopurine (HAP) deoxynucleoside triphosphate] into nucleic acids is prevented by inosine triphosphate pyrophosphatase (ITPA). The ITPA gene is a highly conserved, moderately expressed gene. Defects in ITPA orthologs in model organisms cause severe sensitivity to HAP and chromosome fragmentation. A human polymorphic allele, 94C-->A, encodes for the enzyme with a P32T amino acid change and leads to accumulation of non-hydrolyzed ITP. ITPase activity is not detected in erythrocytes of these patients. The P32T polymorphism has also been associated with adverse sensitivity to purine base analogue drugs. We have found that the ITPA-P32T mutant is a dimer in solution, as is wild-type ITPA, and has normal ITPA activity in vitro, but the melting point of ITPA-P32T is 5 degrees C lower than that of wild-type. ITPA-P32T is also fully functional in vivo in model organisms as determined by a HAP mutagenesis assay and its complementation of a bacterial ITPA defect. The amount of ITPA protein detected by Western blot is severely diminished in a human fibroblast cell line with the 94C-->A change. We propose that the P32T mutation exerts its effect in certain human tissues by cumulative effects of destabilization of transcripts, protein stability, and availability.


Assuntos
Resistência a Medicamentos/genética , Mutação , Polimorfismo Genético , Pirofosfatases , Sequência de Aminoácidos , Animais , Linhagem Celular , Estabilidade Enzimática , Fibroblastos/citologia , Fibroblastos/fisiologia , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Desnaturação Proteica , Multimerização Proteica , Pirofosfatases/química , Pirofosfatases/genética , Pirofosfatases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA