Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Proteomics ; 22(22): e2200155, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36168874

RESUMO

Diatoms are one of the largest groups in phytoplankton biodiversity. Understanding their response to nitrogen variations, present from micromolar to near-zero levels in oceans and fresh waters, is essential to comprehend their ecological success. Nitrogen starvation is used in biotechnological processes, to trigger the remodeling of carbon metabolism in the direction of fatty acids and triacylglycerol synthesis. We evaluated whole proteome changes in Phaeodactylum tricornutum after 7 days of cultivation with 5.5-mM nitrate (+N) or without any nitrogen source (-N). On a total of 3768 proteins detected in biological replicates, our analysis pointed to 384 differentially abundant proteins (DAP). Analysis of proteins of lower abundance in -N revealed an arrest of amino acid and protein syntheses, a remodeling of nitrogen metabolism, and a decrease of the proteasome abundance suggesting a decline in unselective whole-proteome decay. Analysis of proteins of higher abundance revealed the setting up of a general nitrogen scavenging system dependent on deaminases. The increase of a plastid palmitoyl-ACP desaturase appeared as a hallmark of carbon metabolism rewiring in the direction of fatty acid and triacylglycerol synthesis. This dataset is also valuable to select gene candidates for improved biotechnological properties.


Assuntos
Diatomáceas , Diatomáceas/genética , Diatomáceas/metabolismo , Proteoma/metabolismo , Nitrogênio/metabolismo , Proteômica , Carbono/metabolismo , Ácidos Graxos/metabolismo , Triglicerídeos
2.
New Phytol ; 231(1): 326-338, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33764540

RESUMO

Galdieria sulphuraria is a cosmopolitan microalga found in volcanic hot springs and calderas. It grows at low pH in photoautotrophic (use of light as a source of energy) or heterotrophic (respiration as a source of energy) conditions, using an unusually broad range of organic carbon sources. Previous data suggested that G. sulphuraria cannot grow mixotrophically (simultaneously exploiting light and organic carbon as energy sources), its photosynthetic machinery being repressed by organic carbon. Here, we show that G. sulphuraria SAG21.92 thrives in photoautotrophy, heterotrophy and mixotrophy. By comparing growth, biomass production, photosynthetic and respiratory performances in these three trophic modes, we show that addition of organic carbon to cultures (mixotrophy) relieves inorganic carbon limitation of photosynthesis thanks to increased CO2 supply through respiration. This synergistic effect is lost when inorganic carbon limitation is artificially overcome by saturating photosynthesis with added external CO2 . Proteomic and metabolic profiling corroborates this conclusion suggesting that mixotrophy is an opportunistic mechanism to increase intracellular CO2 concentration under physiological conditions, boosting photosynthesis by enhancing the carboxylation activity of Ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) and decreasing photorespiration. We discuss possible implications of these findings for the ecological success of Galdieria in extreme environments and for biotechnological applications.


Assuntos
Extremófilos , Rodófitas , Carbono , Dióxido de Carbono , Processos Heterotróficos , Fotossíntese , Proteômica
3.
Mol Cell Proteomics ; 18(7): 1285-1306, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30962257

RESUMO

The chloroplast is a major plant cell organelle that fulfills essential metabolic and biosynthetic functions. Located at the interface between the chloroplast and other cell compartments, the chloroplast envelope system is a strategic barrier controlling the exchange of ions, metabolites and proteins, thus regulating essential metabolic functions (synthesis of hormones precursors, amino acids, pigments, sugars, vitamins, lipids, nucleotides etc.) of the plant cell. However, unraveling the contents of the chloroplast envelope proteome remains a difficult challenge; many proteins constituting this functional double membrane system remain to be identified. Indeed, the envelope contains only 1% of the chloroplast proteins (i.e. 0.4% of the whole cell proteome). In other words, most envelope proteins are so rare at the cell, chloroplast, or even envelope level, that they remained undetectable using targeted MS studies. Cross-contamination of chloroplast subcompartments by each other and by other cell compartments during cell fractionation, impedes accurate localization of many envelope proteins. The aim of the present study was to take advantage of technologically improved MS sensitivity to better define the proteome of the chloroplast envelope (differentiate genuine envelope proteins from contaminants). This MS-based analysis relied on an enrichment factor that was calculated for each protein identified in purified envelope fractions as compared with the value obtained for the same protein in crude cell extracts. Using this approach, a total of 1269 proteins were detected in purified envelope fractions, of which, 462 could be assigned an envelope localization by combining MS-based spectral count analyses with manual annotation using data from the literature and prediction tools. Many of such proteins being previously unknown envelope components, these data constitute a new resource of significant value to the broader plant science community aiming to define principles and molecular mechanisms controlling fundamental aspects of plastid biogenesis and functions.


Assuntos
Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Membranas Intracelulares/metabolismo , Espectrometria de Massas/métodos , Proteoma/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Extratos Celulares , Bases de Dados de Proteínas , Proteínas de Membrana/metabolismo , Frações Subcelulares/metabolismo
4.
Plant Physiol ; 174(2): 922-934, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28442501

RESUMO

Higher plants, as autotrophic organisms, are effective sources of molecules. They hold great promise for metabolic engineering, but the behavior of plant metabolism at the network level is still incompletely described. Although structural models (stoichiometry matrices) and pathway databases are extremely useful, they cannot describe the complexity of the metabolic context, and new tools are required to visually represent integrated biocurated knowledge for use by both humans and computers. Here, we describe ChloroKB, a Web application (http://chlorokb.fr/) for visual exploration and analysis of the Arabidopsis (Arabidopsis thaliana) metabolic network in the chloroplast and related cellular pathways. The network was manually reconstructed through extensive biocuration to provide transparent traceability of experimental data. Proteins and metabolites were placed in their biological context (spatial distribution within cells, connectivity in the network, participation in supramolecular complexes, and regulatory interactions) using CellDesigner software. The network contains 1,147 reviewed proteins (559 localized exclusively in plastids, 68 in at least one additional compartment, and 520 outside the plastid), 122 proteins awaiting biochemical/genetic characterization, and 228 proteins for which genes have not yet been identified. The visual presentation is intuitive and browsing is fluid, providing instant access to the graphical representation of integrated processes and to a wealth of refined qualitative and quantitative data. ChloroKB will be a significant support for structural and quantitative kinetic modeling, for biological reasoning, when comparing novel data with established knowledge, for computer analyses, and for educational purposes. ChloroKB will be enhanced by continuous updates following contributions from plant researchers.


Assuntos
Cloroplastos/metabolismo , Internet , Bases de Conhecimento , Redes e Vias Metabólicas , Arabidopsis/metabolismo , Frações Subcelulares/metabolismo
5.
Plant Physiol ; 171(4): 2406-17, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27297678

RESUMO

Enriching algal biomass in energy density is an important goal in algal biotechnology. Nitrogen (N) starvation is considered the most potent trigger of oil accumulation in microalgae and has been thoroughly investigated. However, N starvation causes the slow down and eventually the arrest of biomass growth. In this study, we show that exposing a Chlamydomonas reinhardtii culture to saturating light (SL) under a nonlimiting CO2 concentration in turbidostatic photobioreactors induces a sustained accumulation of lipid droplets (LDs) without compromising growth, which results in much higher oil productivity than N starvation. We also show that the polar membrane lipid fraction of SL-induced LDs is rich in plastidial lipids (approximately 70%), in contrast to N starvation-induced LDs, which contain approximately 60% lipids of endoplasmic reticulum origin. Proteomic analysis of LDs isolated from SL-exposed cells identified more than 200 proteins, including known proteins of lipid metabolism, as well as 74 proteins uniquely present in SL-induced LDs. LDs induced by SL and N depletion thus differ in protein and lipid contents. Taken together, lipidomic and proteomic data thus show that a large part of the sustained oil accumulation occurring under SL is likely due to the formation of plastidial LDs. We discuss our data in relation to the different metabolic routes used by microalgae to accumulate oil reserves depending on cultivation conditions. Finally, we propose a model in which oil accumulation is governed by an imbalance between photosynthesis and growth, which can be achieved by impairing growth or by boosting photosynthetic carbon fixation, with the latter resulting in higher oil productivity.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Proteômica , Biomassa , Chlamydomonas reinhardtii/crescimento & desenvolvimento , Chlamydomonas reinhardtii/efeitos da radiação , Luz , Gotículas Lipídicas/efeitos da radiação , Microalgas , Nitrogênio/metabolismo , Fotossíntese
6.
Plant Cell Physiol ; 56(9): 1697-710, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26116422

RESUMO

Methylation of ribosomal proteins has long been described in prokaryotes and eukaryotes, but our knowledge about the enzymes responsible for these modifications in plants is scarce. The bacterial protein methyltransferase PrmA catalyzes the trimethylation of ribosomal protein L11 (RPL11) at three distinct sites. The role of these modifications is still unknown. Here, we show that PrmA from Arabidopsis thaliana (AtPrmA) is dually targeted to chloroplasts and mitochondria. Mass spectrometry and enzymatic assays indicated that the enzyme methylates RPL11 in plasto- and mitoribosomes in vivo. We determined that the Arabidopsis and Escherichia coli PrmA enzymes share similar product specificity, making trimethylated residues, but, despite an evolutionary relationship, display a difference in substrate site specificity. In contrast to the bacterial enzyme that trimethylates the ε-amino group of two lysine residues and the N-terminal α-amino group, AtPrmA methylates only one lysine in the MAFCK(D/E)(F/Y)NA motif of plastidial and mitochondrial RPL11. The plant enzyme possibly methylates the N-terminus of plastidial RPL11, whereas mitochondrial RPL11 is N-α-acetylated by an unknown acetyltransferase. Lastly, we found that an Arabidopsis prma-null mutant is viable in standard environmental conditions and no molecular defect could be associated with a lack of RPL11 methylation in leaf chloroplasts or mitochondria. However, the conservation of PrmA during the evolution of photosynthetic eukaryotes together with the location of methylated residues at the binding site of translation factors to ribosomes suggests that RPL11 methylation in plant organelles could be involved, in combination with other post-translational modifications, in optimizing ribosome function.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Cloroplastos/enzimologia , Metiltransferases/metabolismo , Mitocôndrias/enzimologia , Proteínas Ribossômicas/metabolismo , Sequência de Aminoácidos , Teste de Complementação Genética , Germinação , Metilação , Proteínas Mitocondriais/metabolismo , Dados de Sequência Molecular , Mutação/genética , Peptídeos/química , Peptídeos/metabolismo , Fotossíntese , Filogenia , Biossíntese de Proteínas , Transporte Proteico , Frações Subcelulares/metabolismo
7.
J Biol Chem ; 287(25): 21034-44, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22547063

RESUMO

In pea (Pisum sativum), the protein-lysine methyltransferase (PsLSMT) catalyzes the trimethylation of Lys-14 in the large subunit (LS) of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco), the enzyme catalyzing the CO(2) fixation step during photosynthesis. Homologs of PsLSMT, herein referred to as LSMT-like enzymes, are found in all plant genomes, but methylation of LS Rubisco is not universal in the plant kingdom, suggesting a species-specific protein substrate specificity of the methyltransferase. In this study, we report the biochemical characterization of the LSMT-like enzyme from Arabidopsis thaliana (AtLSMT-L), with a focus on its substrate specificity. We show that, in Arabidopsis, LS Rubisco is not naturally methylated and that the physiological substrates of AtLSMT-L are chloroplastic fructose 1,6-bisphosphate aldolase isoforms. These enzymes, which are involved in the assimilation of CO(2) through the Calvin cycle and in chloroplastic glycolysis, are trimethylated at a conserved lysyl residue located close to the C terminus. Both AtLSMT-L and PsLSMT are able to methylate aldolases with similar kinetic parameters and product specificity. Thus, the divergent substrate specificity of LSMT-like enzymes from pea and Arabidopsis concerns only Rubisco. AtLSMT-L is able to interact with unmethylated Rubisco, but the complex is catalytically unproductive. Trimethylation does not modify the kinetic properties and tetrameric organization of aldolases in vitro. The identification of aldolases as methyl proteins in Arabidopsis and other species like pea suggests a role of protein lysine methylation in carbon metabolism in chloroplasts.


Assuntos
Arabidopsis/enzimologia , Cloroplastos/enzimologia , Frutose-Bifosfato Aldolase/metabolismo , Pisum sativum/enzimologia , Processamento de Proteína Pós-Traducional/fisiologia , Arabidopsis/genética , Cloroplastos/genética , Frutose-Bifosfato Aldolase/genética , Metilação , Pisum sativum/genética , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo
8.
Mol Biol Evol ; 29(12): 3625-39, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22826458

RESUMO

The unicellular green alga Chlamydomonas reinhardtii is a prime model for deciphering processes occurring in the intracellular compartments of the photosynthetic cell. Organelle-specific proteomic studies have started to delineate its various subproteomes, but sequence-based prediction software is necessary to assign proteins subcellular localizations at whole genome scale. Unfortunately, existing tools are oriented toward land plants and tend to mispredict the localization of nuclear-encoded algal proteins, predicting many chloroplast proteins as mitochondrion targeted. We thus developed a new tool called PredAlgo that predicts intracellular localization of those proteins to one of three intracellular compartments in green algae: the mitochondrion, the chloroplast, and the secretory pathway. At its core, a neural network, trained using carefully curated sets of C. reinhardtii proteins, divides the N-terminal sequence into overlapping 19-residue windows and scores the probability that they belong to a cleavable targeting sequence for one of the aforementioned organelles. A targeting prediction is then deduced for the protein, and a likely cleavage site is predicted based on the shape of the scoring function along the N-terminal sequence. When assessed on an independent benchmarking set of C. reinhardtii sequences, PredAlgo showed a highly improved discrimination capacity between chloroplast- and mitochondrion-localized proteins. Its predictions matched well the results of chloroplast proteomics studies. When tested on other green algae, it gave good results with Chlorophyceae and Trebouxiophyceae but tended to underpredict mitochondrial proteins in Prasinophyceae. Approximately 18% of the nuclear-encoded C. reinhardtii proteome was predicted to be targeted to the chloroplast and 15% to the mitochondrion.


Assuntos
Proteínas de Algas/metabolismo , Chlamydomonas reinhardtii/genética , Cloroplastos/metabolismo , Mitocôndrias/metabolismo , Proteômica/métodos , Via Secretória/genética , Software , Proteínas de Algas/genética , Chlamydomonas reinhardtii/metabolismo , Biologia Computacional , Redes Neurais de Computação
9.
Methods Mol Biol ; 2426: 163-196, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36308690

RESUMO

Prostar is a software tool dedicated to the processing of quantitative data resulting from mass spectrometry-based label-free proteomics. Practically, once biological samples have been analyzed by bottom-up proteomics, the raw mass spectrometer outputs are processed by bioinformatics tools, so as to identify peptides and quantify them, notably by means of precursor ion chromatogram integration. From that point, the classical workflows aggregate these pieces of peptide-level information to infer protein-level identities and amounts. Finally, protein abundances can be statistically analyzed to find out proteins that are significantly differentially abundant between compared conditions. Prostar original workflow has been developed based on this strategy. However, recent works have demonstrated that processing peptide-level information is often more accurate when searching for differentially abundant proteins, as the aggregation step tends to hide some of the data variabilities and biases. As a result, Prostar has been extended by workflows that manage peptide-level data, and this protocol details their use. The first one, deemed "peptidomics," implies that the differential analysis is conducted at peptide level, independently of the peptide-to-protein relationship. The second workflow proposes to aggregate the peptide abundances after their preprocessing (i.e., after filtering, normalization, and imputation), so as to minimize the amount of protein-level preprocessing prior to differential analysis.


Assuntos
Proteoma , Proteômica , Proteômica/métodos , Proteoma/análise , Espectrometria de Massas/métodos , Peptídeos/análise , Software
10.
Cancer Discov ; 12(9): 2158-2179, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35819319

RESUMO

Small cell lung cancer (SCLC) is the most fatal form of lung cancer, with dismal survival, limited therapeutic options, and rapid development of chemoresistance. We identified the lysine methyltransferase SMYD3 as a major regulator of SCLC sensitivity to alkylation-based chemotherapy. RNF113A methylation by SMYD3 impairs its interaction with the phosphatase PP4, controlling its phosphorylation levels. This cross-talk between posttranslational modifications acts as a key switch in promoting and maintaining RNF113A E3 ligase activity, essential for its role in alkylation damage response. In turn, SMYD3 inhibition restores SCLC vulnerability to alkylating chemotherapy. Our study sheds light on a novel role of SMYD3 in cancer, uncovering this enzyme as a mediator of alkylation damage sensitivity and providing a rationale for small-molecule SMYD3 inhibition to improve responses to established chemotherapy. SIGNIFICANCE: SCLC rapidly becomes resistant to conventional chemotherapy, leaving patients with no alternative treatment options. Our data demonstrate that SMYD3 upregulation and RNF113A methylation in SCLC are key mechanisms that control the alkylation damage response. Notably, SMYD3 inhibition sensitizes cells to alkylating agents and promotes sustained SCLC response to chemotherapy. This article is highlighted in the In This Issue feature, p. 2007.


Assuntos
Proteínas de Ligação a DNA , Histona-Lisina N-Metiltransferase , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Alquilação , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Metilação , Fosforilação , Processamento de Proteína Pós-Traducional , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/genética
11.
Mol Biol Evol ; 26(7): 1533-48, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19349646

RESUMO

Mitochondria play a key role in the life and death of eukaryotic cells, yet the full spectrum of mitochondrial functions is far from being fully understood, especially in photosynthetic organisms. To advance our understanding of mitochondrial functions in a photosynthetic cell, an extensive proteomic survey of Percoll-purified mitochondria from the metabolically versatile, hydrogen-producing green alga Chlamydomonas reinhardtii was performed. Different fractions of purified mitochondria from Chlamydomonas cells grown under aerobic conditions were analyzed by nano-liquid chromatography-electrospray ionization-mass spectrometry after protein separation on sodium dodecyl sulfate polyacrylamide gel electrophoresis or on blue-native polyacrylamide gel electrophoresis. Of the 496 nonredundant proteins identified, 149 are known or predicted to reside in other cellular compartments and were thus excluded from the molecular and evolutionary analyses of the Chlamydomonas proteome. The mitochondrial proteome of the photosynthetic alga reveals important lineage-specific differences with other mitochondrial proteomes, reflecting the high metabolic diversity of the organelle. Some mitochondrial metabolic pathways in Chlamydomonas appear to combine typical mitochondrial enzymes and bacterial-type ones, whereas others are unknown among mitochondriate eukaryotes. The comparison of the Chlamydomonas proteins to their identifiable homologs predicted from 354 sequenced genomes indicated that Arabidopsis is the most closely related nonalgal eukaryote. Furthermore, this phylogenomic analysis shows that free-living alpha-proteobacteria from the metabolically versatile orders Rhizobiales and Rhodobacterales better reflect the gene content of the ancestor of the chlorophyte mitochondria than parasitic alpha-proteobacteria with reduced and specialized genomes.


Assuntos
Evolução Biológica , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Alphaproteobacteria/metabolismo , Animais , Chlamydomonas reinhardtii/citologia , Mitocôndrias/química , Fosforilação Oxidativa , Proteoma
12.
Mol Plant ; 9(4): 569-81, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26785049

RESUMO

Rubisco and fructose-1,6-bisphosphate aldolases (FBAs) are involved in CO2 fixation in chloroplasts. Both enzymes are trimethylated at a specific lysine residue by the chloroplastic protein methyltransferase LSMT. Genes coding LSMT are present in all plant genomes but the methylation status of the substrates varies in a species-specific manner. For example, chloroplastic FBAs are naturally trimethylated in both Pisum sativum and Arabidopsis thaliana, whereas the Rubisco large subunit is trimethylated only in the former species. The in vivo methylation status of aldolases and Rubisco matches the catalytic properties of AtLSMT and PsLSMT, which are able to trimethylate FBAs or FBAs and Rubisco, respectively. Here, we created chimera and site-directed mutants of monofunctional AtLSMT and bifunctional PsLSMT to identify the molecular determinants responsible for substrate specificity. Our results indicate that the His-Ala/Pro-Trp triad located in the central part of LSMT enzymes is the key motif to confer the capacity to trimethylate Rubisco. Two of the critical residues are located on a surface loop outside the methyltransferase catalytic site. We observed a strict correlation between the presence of the triad motif and the in vivo methylation status of Rubisco. The distribution of the motif into a phylogenetic tree further suggests that the ancestral function of LSMT was FBA trimethylation. In a recent event during higher plant evolution, this function evolved in ancestors of Fabaceae, Cucurbitaceae, and Rosaceae to include Rubisco as an additional substrate to the archetypal enzyme. Our study provides insight into mechanisms by which SET-domain protein methyltransferases evolve new substrate specificity.


Assuntos
Aldeído Liases/metabolismo , Cloroplastos/enzimologia , Ribulose-Bifosfato Carboxilase/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Evolução Molecular , Metilação , Modelos Moleculares , Mutagênese Sítio-Dirigida , Domínios Proteicos , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/genética , Especificidade por Substrato
13.
Curr Biol ; 26(5): 627-39, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26898467

RESUMO

The mitochondrion is an organelle originating from an endosymbiotic event and playing a role in several fundamental processes such as energy production, metabolite syntheses, and programmed cell death. This organelle is delineated by two membranes whose synthesis requires an extensive exchange of phospholipids with other cellular organelles such as endoplasmic reticulum (ER) and vacuolar membranes in yeast. These transfers of phospholipids are thought to occur by a non-vesicular pathway at contact sites between two closely apposed membranes. In plants, little is known about the biogenesis of mitochondrial membranes. Contact sites between ER and mitochondria are suspected to play a similar role in phospholipid trafficking as in yeast, but this has never been demonstrated. In contrast, it has been shown that plastids are able to transfer lipids to mitochondria during phosphate starvation. However, the proteins involved in such transfer are still unknown. Here, we identified in Arabidopsis thaliana a large lipid-enriched complex called the mitochondrial transmembrane lipoprotein (MTL) complex. The MTL complex contains proteins located in the two mitochondrial membranes and conserved in all eukaryotic cells, such as the TOM complex and AtMic60, a component of the MICOS complex. We demonstrate that AtMic60 contributes to the export of phosphatidylethanolamine from mitochondria and the import of galactoglycerolipids from plastids during phosphate starvation. Furthermore, AtMic60 promotes lipid desorption from membranes, likely as an initial step for lipid transfer, and binds to Tom40, suggesting that AtMic60 could regulate the tethering between the inner and outer membranes of mitochondria.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Metabolismo dos Lipídeos , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Transporte Proteico , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo
14.
PLoS One ; 9(4): e95512, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24748391

RESUMO

Post-translational modification of proteins by the addition of methyl groups to the side chains of Lys and Arg residues is proposed to play important roles in many cellular processes. In plants, identification of non-histone methylproteins at a cellular or subcellular scale is still missing. To gain insights into the extent of this modification in chloroplasts we used a bioinformatics approach to identify protein methyltransferases targeted to plastids and set up a workflow to specifically identify Lys and Arg methylated proteins from proteomic data used to produce the Arabidopsis chloroplast proteome. With this approach we could identify 31 high-confidence Lys and Arg methylation sites from 23 chloroplastic proteins, of which only two were previously known to be methylated. These methylproteins are split between the stroma, thylakoids and envelope sub-compartments. They belong to essential metabolic processes, including photosynthesis, and to the chloroplast biogenesis and maintenance machinery (translation, protein import, division). Also, the in silico identification of nine protein methyltransferases that are known or predicted to be targeted to plastids provided a foundation to build the enzymes/substrates relationships that govern methylation in chloroplasts. Thereby, using in vitro methylation assays with chloroplast stroma as a source of methyltransferases we confirmed the methylation sites of two targets, plastid ribosomal protein L11 and the ß-subunit of ATP synthase. Furthermore, a biochemical screening of recombinant chloroplastic protein Lys methyltransferases allowed us to identify the enzymes involved in the modification of these substrates. The present study provides a useful resource to build the methyltransferases/methylproteins network and to elucidate the role of protein methylation in chloroplast biology.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Motivos de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/isolamento & purificação , Arginina/metabolismo , Bases de Dados de Proteínas , Espaço Intracelular/metabolismo , Lisina/metabolismo , Espectrometria de Massas , Metilação , Metiltransferases/metabolismo , Modelos Moleculares , Conformação Proteica , Transporte Proteico , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
15.
J Proteome Res ; 7(5): 1873-83, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18348511

RESUMO

PepLine is a fully automated software which maps MS/MS fragmentation spectra of trypsic peptides to genomic DNA sequences. The approach is based on Peptide Sequence Tags (PSTs) obtained from partial interpretation of QTOF MS/MS spectra (first module). PSTs are then mapped on the six-frame translations of genomic sequences (second module) giving hits. Hits are then clustered to detect potential coding regions (third module). Our work aimed at optimizing the algorithms of each component to allow the whole pipeline to proceed in a fully automated manner using raw nucleic acid sequences (i.e., genomes that have not been "reduced" to a database of ORFs or putative exons sequences). The whole pipeline was tested on controlled MS/MS spectra sets from standard proteins and from Arabidopsis thaliana envelope chloroplast samples. Our results demonstrate that PepLine competed with protein database searching softwares and was fast enough to potentially tackle large data sets and/or high size genomes. We also illustrate the potential of this approach for the detection of the intron/exon structure of genes.


Assuntos
Proteínas de Arabidopsis/análise , Genoma , Espectrometria de Massas , Peptídeos/análise , Software , Algoritmos , Sequência de Aminoácidos , Animais , Arabidopsis/química , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sequência de Bases , Cloroplastos/química , Cloroplastos/genética , Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Dados de Sequência Molecular , Peptídeos/genética , Alinhamento de Sequência
16.
Biochem J ; 372(Pt 2): 453-63, 2003 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-12600272

RESUMO

Migration of myeloid cells towards a source of chemoattractant, such as the C5a anaphylatoxin, is triggered by the activation of a G-protein-coupled receptor. In the present study, we have used a yeast two-hybrid approach to find unknown partners of the C5a receptor (C5aR). Using the cytosolic C-terminal region of C5aR as bait to screen a human leucocyte cDNA library, we identified the Wiskott-Aldrich syndrome protein (WASP) as a potential partner of C5aR. WASP is known to have an essential function in regulating actin dynamics at the cell leading edge. The interaction was detected with both the fragment of WASP containing amino acids 1-321 (WASP.321) and WASP with its actin-nucleation-promoting domain [verprolin-like, central and acidic (VCA) domain] deleted. The interaction between C5aR and the WASP.321 was supported further by an in vitro binding assay between a radiolabelled WASP.321 fragment and a receptor C-terminus glutathione S-transferase (GST) fusion protein, as well as by GST pull-down, co-immunoprecipitation and immunofluorescence experiments. In the yeast two-hybrid assay, full-length WASP showed no ability to interact with the C-terminal domain of C5aR. This is most probably due to an auto-inhibited conformation imposed by the VCA domain. In HEK-293T cells co-transfected with full-length WASP and C5aR, only a small amount of WASP was co-precipitated with the receptor. However, in the presence of the active form of the GTPase Cdc42 (Cdc42V12), which is thought to switch WASP to an active 'open conformation', the amount of WASP associated with the receptor was markedly increased. We hypothesize that a transient interaction between C5aR and WASP occurs following the stimulation of C5aR and Cdc42 activation. This might be one mechanism by which WASP is targeted to the plasma membrane and by which actin assembly is spatially controlled in cells moving in a gradient of C5a.


Assuntos
Antígenos CD/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteínas/metabolismo , Receptores de Complemento/metabolismo , Actinas/química , Actinas/metabolismo , Animais , Antígenos CD/genética , Sítios de Ligação , Western Blotting , Células COS/citologia , Membrana Celular , Células Cultivadas , Chlorocebus aethiops , Complemento C5a/metabolismo , Ativação Enzimática , Imunofluorescência , Deleção de Genes , Biblioteca Gênica , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Humanos , Leucócitos/metabolismo , Mutação , Fragmentos de Peptídeos/genética , Testes de Precipitina , Ligação Proteica , Conformação Proteica , Proteínas/genética , Receptor da Anafilatoxina C5a , Receptores de Complemento/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transfecção , Técnicas do Sistema de Duplo-Híbrido , Síndrome de Wiskott-Aldrich/metabolismo , Proteína da Síndrome de Wiskott-Aldrich , Proteína cdc42 de Ligação ao GTP/metabolismo
17.
Blood ; 100(5): 1835-44, 2002 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-12176907

RESUMO

A tetracycline-controlled expression system was adapted to the human promyelocytic HL-60 cell line by placement of the transactivator (tTA-off) sequence under the control of the human EF-1alpha promoter region. Constitutively active and dominant-inhibitory forms of Cdc42 (Cdc42V12 and Cdc42N17, respectively) were conditionally expressed in this system. The expression of Cdc42V12 had no marked effect on chemoattractant-mediated superoxide production, corroborating previous results indicating that the guanosine 5'-triphosphate (GTP)-bound form of Cdc42 is ineffective in directly activating nicotinamide adenine dinucleotide phosphate (NADPH) oxidase in a cell-free system. However, the N17 mutant potently inhibited chemoattractant-induced superoxide production. The expression of Cdc42N17 interfered with the GTP-loading of Rac and Ras and with the activation of the MAP-kinase pathway. A drastic reduction of chemoattractant-induced inositol-1,4,5-trisphosphate formation and calcium mobilization was observed, corroborating previous in vitro study results identifying PLCbeta2 as a Rac/Cdc42 effector. Cdc42N17 was also found to inhibit the translocation of Ras-GRF2, a guanine nucleotide exchange factor for Ras and Rac but not for Cdc42. Thus, the dominant-inhibitory mutant Cdc42N17 was found to interfere at multiple levels in the signaling pathways. The pleiotropic inhibitory effects of Cdc42N17 illustrate the potential pitfalls of using dominant-inhibitory proteins to study the function of Ras-family GTPases. In this regard, a number of conclusions drawn from the use of dominant-inhibitory mutants in myeloid cells might have to be reconsidered.


Assuntos
NADPH Oxidases/metabolismo , Transdução de Sinais , Proteína cdc42 de Ligação ao GTP/metabolismo , Ativação Enzimática , Células HL-60 , Humanos , Regiões Promotoras Genéticas , Tetraciclina/metabolismo , Ativação Transcricional , Proteína cdc42 de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA