RESUMO
Soil is the backbone of the agricultural economy of any country. Soil salinity refers to the higher concentration of soluble salts in the soil. Soil salinity is a ruinous abiotic stress that has emerged as a threatening issue for food security. High salt concentration causes an ionic imbalance that hampers water uptake, affecting photosynthesis and other metabolic processes, ultimately resulting in inferior seed germination and stunted plant growth. A wide range of strategies have been adopted to mitigate the harmful effects of salinity such as efficient irrigation techniques, soil reclamation, habitat restoration, flushing, leaching or using salt-tolerant crops, but all the methods have one or more limitations. An alternative and effective strategy is the exploitation of salt-tolerant plant growth-promoting bacteria (ST-PGPB) to mitigate salt stress and improve crop productivity. ST-PGPB can survive in salinity-tainted environments and perform their inherent plant growth-promoting and biocontrol functions effectively. Additionally, ST-PGPB can rescue plants via stress-responsive mechanisms including production of growth regulators, maintenance of osmotic balance, aminocyclopropane-1-carboxylate (ACC) deaminase activity, exopolysaccharides (EPS) activity, improvement in photosynthesis activity, synthesis of compatible solutes, antioxidant activity and regulation of salt overly sensitive (SOS) signaling pathway. Several well-known ST-PGPB, specifically Azospirillum, Bacillus, Burkholderia, Enterobacter, Pseudomonas and Pantoea, are used as bioinoculants to improve the growth of different crops. The application of ST-PGPB allows plants to cope with salt stress by boosting their defense mechanisms. This review highlights the impact of salinity stress on plant growth and the potential of ST-PGPB as a biofertilizer to improve crop productivity under salt stress.
Assuntos
Bactérias , Desenvolvimento Vegetal , Microbiologia do Solo , Bactérias/metabolismo , Bactérias/classificação , Salinidade , Produtos Agrícolas/microbiologia , Produtos Agrícolas/crescimento & desenvolvimento , Tolerância ao Sal , Reguladores de Crescimento de Plantas/metabolismo , Solo/químicaRESUMO
Microorganisms belonging to root and soil provide a wide range of services and benefits to the plant by promoting plant growth and controlling phytopathogens. This study aimed to isolate endophytic bacteria from the root nodules of chickpea (Cicer arietinum L.) and determine their potential in improving plant growth. A total of nineteen different bacterial morphotypes were isolated from root nodules of chickpea and characterized in vitro for plant growth promotion abilities. All bacterial isolates were able to produce indole acetic acid at varying levels, out of which MCA19 was screened as the most efficient indole acetic acid producer (10.25 µg mL-1). MCA8, MCA9, MCA10, MCA11, MCA16, MCA17 and MCA19 were positive for phosphate solubilization, out of which MCA9 was best phosphate solubilizer (18.8 µg mL-1). All bacterial strains showed varying ability to grow on nitrogen-free media. Hydrogen cyanide, pectinase, and cellulase production ability were also observed in isolates, in which MCA9, MCA12, MCA17 and MCA19 were found best. Based on in vitro testing, five isolates MCA2, MCA9, MCA11, MCA17 and MCA19 were selected for further studies. Bacterial isolates MCA9, MCA11, MCA17 and MCA19 were identified by 16S rRNA gene sequence analysis as Pantoea dispersa while MCA2 as Rhizobium pusense. This is the first report on the existence of Pantoea dispersa in the root nodules of chickpea. In pot experiment, a maximum increase of 30% was recorded in plant dry weight upon the application of MCA19. Under field conditions, bacterial isolates, MCA2, MCA11 and MCA19 significantly enhanced nodulation and yield parameters of chickpea, compared to control. Pantoea dispersa MCA19 displayed the highest plant growth-promoting potential by increasing 38% grain yield. Our results indicate that Pantoea dispersa MCA19 is a promising biofertilizer for future applications.
Assuntos
Cicer , Pantoea , RNA Ribossômico 16S/genética , FosfatosRESUMO
Application of biofertilizers containing living or dormant plant growth promoting bacterial cells is considered to be an ecofriendly alternative of chemical fertilizers for improved crop production. Biofertilizers opened myriad doors towards sustainable agriculture as they effectively reduce heavy use of chemical fertilizers and pesticides by keeping soils profuse in micro and macronutrients, regulating plant hormones and restraining infections caused by the pests present in soil without inflicting environmental damage. Generally, pathogenicity and biosafety testing of potential plant growth promoting bacteria (PGPB) are not performed, and the bacteria are reported to be beneficial solely on testing plant growth promoting characteristics. Unfortunately, some rhizosphere and endophytic PGPB are reported to be involved in various diseases. Such PGPB can also spread virulence and multidrug resistance genes carried by them through horizontal gene transfer to other bacteria in the environment. Therefore, deployment of such microbial populations in open fields could lead to disastrous side effects on human health and environment. Careless declaration of bacteria as PGPB is more pronounced in research publications. Here, we present a comprehensive report of declared PGPB which are reported to be pathogenic in other studies. This review also suggests the employment of some additional safety assessment protocols before reporting a bacteria as beneficial and product development.
RESUMO
This study investigates the mercury (Hg) contaminations in soil and foodstuffs along the artisanal gold mining areas, Gilgit-Baltistan Province, Pakistan. For this purpose, soils were analyzed for Hg concentrations and evaluated for the enrichment/contamination using enrichment factor or contamination factors (CF). The CF values ranged from 18.9 to 153 showed multifold higher levels of Hg contamination as compared to background or reference site. Foodstuffs including vegetables, seeds or grains and fish muscles showed Hg accumulation. Results revealed that Hg concentrations in foodstuffs were higher than the critical human health value set by European Union. The Hg in foodstuffs was consumed and, therefore, evaluated for the risk assessment indices using the daily intake (DI) and health risk index (HRI) for the exposed human population both children and adults. Results of this study revealed that cumulative HRI values through foodstuffs consumption were <1 (within safe limit), but if the current practices continued, then the Hg contamination could pose potential threat to exposed population in near future.
Assuntos
Exposição Dietética , Contaminação de Alimentos/análise , Ouro , Mercúrio/análise , Mineração , Saúde da População , Poluentes do Solo/análise , Adulto , Criança , Feminino , Humanos , Masculino , Mercúrio/toxicidade , Paquistão , Medição de Risco , Poluentes do Solo/toxicidadeRESUMO
Potentially toxic elements (PTEs) contaminations in the soil ecosystem are considered as extremely hazardous due to toxicity, persistence and bioaccumulative nature. Therefore, this study was aimed to summarize the results of published PTEs in soil of Khyber Pakhtunkhwa and Tribal areas, Pakistan. Results were evaluated for the pollution quantification factors, including contamination factor (CF), pollution load index (PLI), ecological risk index (ERI) and human health risk assessment. The highest CF (797) and PLI (7.35) values were observed for Fe and ERI (857) values for Cd. Soil PTEs concentrations were used to calculate the human exposure for the risk assessment, including chronic or non-carcinogenic risks such as the hazard quotient (HQ) and carcinogenic or cancer risk (CR). The values of HQ were > 1 for the Cd, Co and Cr in Khyber Pakhtunkhwa and Tribal areas. Tribal areas showed higher values of ERI, HQ, and CR as compared to the Khyber Pakhtunkhwa that were attributed to the mining activities, weathering and erosion of mafic and ultramafic bedrocks hosting ophiolites. This study strongly recommends that best control measures need to be taken for soil PTEs with the intent to alleviate any continuing potential threat to the human health, property and environment, which otherwise could enter ecosystem and ultimately the living beings. Further studies are recommended to combat the soil PTEs concentrations and toxicity in the Tribal areas for a best picture of understanding the element effects on human, and environment can be achieved that will lead to a sustainable ecological harmony.
Assuntos
Monitoramento Ambiental/métodos , Medição de Risco/métodos , Poluentes do Solo/análise , Solo/química , Ecologia , Poluição Ambiental/análise , Humanos , Metais Pesados/análise , Mineração , PaquistãoRESUMO
Root nodule accommodates various non-nodulating bacteria at varying densities. Present study was planned to identify and characterize the non-nodulating bacteria from the pea plant. Ten fast growing bacteria were isolated from the root nodules of cultivated pea plants. These bacterial isolates were unable to nodulate pea plants in nodulation assay, which indicate the non-rhizobial nature of these bacteria. Bacterial isolates were tested in vitro for plant growth promoting properties including indole acetic acid (IAA) production, nitrogen fixation, phosphate solubilization, root colonization and biofilm formation. Six isolates were able to produce IAA at varying level from 0.86 to 16.16 µg ml(-1), with the isolate MSP9 being most efficient. Only two isolates, MSP2 and MSP10, were able to fix nitrogen. All isolates were able to solubilize inorganic phosphorus ranging from 5.57 to 11.73 µg ml(-1), except MSP4. Bacterial isolates showed considerably better potential for colonization on pea roots. Isolates MSP9 and MSP10 were most efficient in biofilm formation on polyvinyl chloride, which indicated their potential to withstand various biotic and abiotic stresses, whereas the remaining isolates showed a very poor biofilm formation ability. The most efficient plant growth promoting agents, MSP9 and MSP10, were phylogenetically identified by 16S rRNA gene sequence analysis as Ochrobactrum and Enterobacter, respectively, with 99% similarity. It is suggested the potential endophytic bacterial strains, Ochrobactrum sp. MSP9 and Enterobacter sp. MSP10, can be used as biofertilizers for various legume and non-legume crops after studying their interaction with the host crop and field evaluation.
Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Biodiversidade , Pisum sativum/crescimento & desenvolvimento , Pisum sativum/microbiologia , Nódulos Radiculares de Plantas/microbiologia , Bactérias/genética , Bactérias/metabolismo , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Ácidos Indolacéticos/metabolismo , Dados de Sequência Molecular , Fixação de Nitrogênio , Fosfatos/metabolismo , Desenvolvimento Vegetal , RNA Ribossômico 16S/genética , Análise de Sequência de DNARESUMO
Introduction: The escalating threat of drought poses a significant challenge to sustainable food production and human health, as water scarcity adversely impacts various aspects of plant physiology. Maize, a cornerstone in staple cereal crops, faces the formidable challenge of drought stress that triggers a series of transformative responses in the plant. Methods: The present study was carried out in two sets of experiments. In first experiment, drought stress was applied after maintaining growth for 45 days and then irrigation was skipped, and plant samples were collected at 1st, 3rd and 6th day of drought interval for evaluation of changes in plant growth, water relation (relative water content) and antioxidants activity by inoculating indigenously isolated drought tolerant biofilm producing rhizobacterial isolates (Bacillus subtilis SRJ4, Curtobacterium citreum MJ1). In the second experiment, glycine betaine was applied as osmoregulator in addition to drought tolerant PGPR to perceive modulation in photosynthetic pigments (Chlorophyll a and b) and plant growth under varying moisture stress levels (100, 75 and 50% FC). Results and discussion: Results of the study revealed upsurge in root and shoot length, fresh and dry biomass of root and shoot besides increasing chlorophyll contents in water stressed inoculated plants compared to uninoculated plants. Glycine betaine application resulted in an additional boost to plant growth and photosynthetic pigments, when applied in combination with bacterial inoculants. However, both bacterial inoculants behaved differently under drought stress as evident from their biochemical and physiological attributes. Isolate SRJ4 proved to be superior for its potential to express antioxidant activity, leaf water potential and relative water contents and drought responsive gene expression while isolate MJ1 showed exclusive increase in root dry biomass and plant P contents. Though it is quite difficult to isolate the bacterial isolates having both plant growth promoting traits and drought tolerance together yet, such biological resources could be an exceptional option to be applied for improving crop productivity and sustainable agriculture under abiotic stresses. By exploring the combined application of PGPR and glycine betaine, the study seeks to provide insights into potential strategies for developing sustainable agricultural practices aimed at improving crop resilience under challenging environmental conditions.
RESUMO
Wheat (Triticum aestivum L.) is a major source of calorific intake in its various forms and is considered one of the most important staple foods. Improved wheat productivity can contribute substantially to addressing food security in the coming decades. Soil salinity is the most serious limiting factor in crop production and fertilizer use efficiency. In this study, 11 bacteria were isolated from wheat rhizosphere and examined for salt tolerance ability. WGT1, WGT2, WGT3, WGT6, WGT8, and WGT11 were able to tolerate NaCl salinity up to 4%. Bacterial isolates were characterized in vitro for plant growth-promoting properties including indole-3-acetic acid (IAA) production, phosphate solubilization, nitrogen fixation, zinc solubilization, biofilm formation, and cellulase-pectinase production. Six isolates, WGT1, WGT3, WGT4, WGT6, WGT8, and WGT9 showed IAA production ability ranging from 0.7-6 µg m/L. WGT8 displayed the highest IAA production. Five isolates, WGT1, WGT2, WGT5, WGT10, and WGT11, demonstrated phosphate solubilization ranging from 1.4-12.3 µg m/L. WGT2 showed the highest phosphate solubilization. Nitrogen fixation was shown by only two isolates, WGT1 and WGT8. Zinc solubilization was shown by WGT1 and WGT11 on minimal media. All isolates showed biofilm formation ability, where WGT4 exhibited maximum potential. Cellulase production ability was noticed in WGT1, WGT2, WGT4, and WGT5, while pectinase production was observed in WGT2 and WGT3. Phylogenetic identification of potential bacteria isolates confirmed their close relationship with various species of the genus Bacillus. WGT1, WGT2, and WGT3 showed the highest similarity with B. cereus, WGT6 with B. tianshenii, WGT8 with B. subtilis, and WGT11 with B. thuringiensis. Biofertilizer characteristics of salt-tolerant potential rhizospheric bacteria were evaluated by inoculating wheat plants under controlled conditions and field experiments. B. cereus WGT1 and B. thuringiensis WGT11 displayed the maximum potential to increase plant growth parameters and enhance grain yield by 37% and 31%, respectively. Potential bacteria of this study can tolerate salt stress, have the ability to produce plant growth promoting substances under salt stress and contribute significantly to enhance wheat grain yield. These bacterial isolates have the potential to be used as biofertilizers for improved wheat production under salinity conditions and contribute to the sustainable agriculture.
Assuntos
Bacillus , Rizosfera , Estresse Salino , Triticum , Celulases , Fosfatos , Filogenia , Poligalacturonase , Triticum/crescimento & desenvolvimento , Triticum/microbiologia , ZincoRESUMO
Wheat is the second most important staple crop grown and consumed worldwide. Temperature fluctuations especially the cold stress during the winter season reduces wheat growth and grain yield. Psychrotolerant plant growth-promoting rhizobacteria (PGPR) may improve plant stress-tolerance in addition to serve as biofertilizer. The present study aimed to isolate and identify PGPR, with the potential to tolerate cold stress for subsequent use in supporting wheat growth under cold stress. Ten psychrotolerant bacteria were isolated from the wheat rhizosphere at 4 °C and tested for their ability to grow at wide range of temperature ranging from -8 °C to 36 °C and multiple plant beneficial traits. All bacteria were able to grow at 4 °C to 32 °C temperature range and solubilized phosphorus except WR23 at 4 °C, whereas all the bacteria solubilized phosphorus at 28 °C. Seven bacteria produced indole-3-acetic acid at 4 °C, whereas all produced indole-3-acetic acid at 28 °C. Seven bacteria showed the ability to fix nitrogen at 4 °C, while all the bacteria fixed nitrogen at 28 °C. Only one bacterium showed the potential to produce cellulase at 4 °C, whereas four bacteria showed the potential to produce cellulase at 28 °C. Seven bacteria produced pectinase at 4 °C, while one bacterium produced pectinase at 28 °C. Only one bacterium solubilized the zinc at 4 °C, whereas six bacteria solubilized the zinc at 28 °C using ZnO as the primary zinc source. Five bacteria solubilized the zinc at 4 °C, while seven bacteria solubilized the zinc at 28 °C using ZnCO3 as the primary zinc source. All the bacteria produced biofilm at 4 °C and 28 °C. In general, we noticed behavior of higher production of plant growth-promoting substances at 28 °C, except pectinase assay. Overall, in vitro testing confirms that microbes perform their inherent properties efficiently at optimum temperatures rather than the low temperatures due to high metabolic rate. Five potential rhizobacteria were selected based on the in vitro testing and evaluated for plant growth-promoting potential on wheat under controlled conditions. WR22 and WR24 significantly improved wheat growth, specifically increasing plant dry weight by 42% and 58%, respectively. 16S rRNA sequence analysis of WR22 showed 99.78% similarity with Cupriavidus campinensis and WR24 showed 99.9% similarity with Enterobacter ludwigii. This is the first report highlighting the association of C. campinensis and E. ludwigii with wheat rhizosphere. These bacteria can serve as potential candidates for biofertilizer to mitigate the chilling effect and improve wheat production after field-testing.
Assuntos
Alphaproteobacteria , Celulases , Triticum/genética , RNA Ribossômico 16S/genética , Poligalacturonase/metabolismo , Bactérias/genética , Fósforo/metabolismo , Alphaproteobacteria/genética , Nitrogênio/metabolismo , Zinco/metabolismo , Celulases/metabolismoRESUMO
Soil salinity is one of the major limiting factors in plant growth regulation. Salinity-tolerant endophytic bacteria (STEB) can be used to alleviate the negative effects of salinity and promote plant growth. In this study, thirteen endophytic bacteria were isolated from mungbean roots and tested for NaCl salt-tolerance up to 4%. Six bacterial isolates, TMB2, TMB3, TMB5, TMB6, TMB7 and TMB9, demonstrated the ability to tolerate salt. Plant growth-promoting properties such as phosphate solubilization, indole-3-acetic acid (IAA) production, nitrogen fixation, zinc solubilization, biofilm formation and hydrolytic enzyme production were tested in vitro under saline conditions. Eight bacterial isolates indicated phosphate solubilization potential ranging from 5.8-17.7 µg mL-1, wherein TMB6 was found most efficient. Ten bacterial isolates exhibited IAA production ranging from 0.3-2.1 µg mL-1, where TMB7 indicated the highest potential. All the bacterial isolates except TMB13 exhibited nitrogenase activity. Three isolates, TMB6, TMB7 and TMB9, were able to solubilize zinc on tris-minimal media. All isolates were capable of forming biofilm except TMB12 and TMB13. Only TMB2, TMB6 and TMB7 exhibited cellulase activity, while TMB2 and TMB7 exhibited pectinase production. Based on in vitro testing, six efficient STEB were selected and subjected to the further studies. 16S rRNA gene sequencing of efficient STEB revealed the maximum similarity between TMB2 and Rhizobium pusense, TMB3 and Agrobacterium leguminum, TMB5 and Achromobacter denitrificans, TMB6 and Pseudomonas extremorientalis, TMB7 and Bradyrhizobium japonicum and TMB9 and Serratia quinivorans. This is the first international report on the existence of A. leguminum, A. denitrificans, P. extremorientalis and S. quinivorans inside the roots of mungbean. Under controlled-conditions, inoculation of P. extremorientalis TMB6, B. japonicum TMB7 and S. quinivorans TMB9 exhibited maximum potential to increase plant growth parameters; specifically plant dry weight was increased by up to 52%, 61% and 45%, respectively. Inoculation of B. japonicum TMB7 displayed the highest potential to increase plant proline, glycine betaine and total soluble proteins contents by 77%, 78% and 64%, respectively, compared to control under saline conditions. It is suggested that the efficient STEB could be used as biofertilizers for mungbean crop productivity under saline conditions after field-testing.
RESUMO
Delignification efficacy of xylanases to facilitate the consequent chemical bleaching of Kraft pulps has been studied widely. In this work, an alkaline and thermally stable cellulase-less xylanase, derived from a xylanolytic Bacillus subtilis, has been purified by a combination of gel filtration and Q-Sepharose chromatography to its homogeneity. Molecular weight of the purified xylanase was 61 kDa by SDS-PAGE. The purified enzyme revealed an optimum assay temperature and pH of 60°C and 8.0, respectively. Xylanase was active in the pH range of 6.0-9.0 and stable up to 70°C. Divalent ions like Ca(2+), Mg(2+) and Zn(2+) enhanced xylanase activity, whereas Hg(2+), Fe(2+), and Cu(2+) were inhibitory to xylanase at 2 mM concentration. It showed K ( m ) and V ( max ) values of 9.5 mg/ml and 53.6 µmol/ml/min, respectively, using birchwood xylan as a substrate. Xylanase exhibited higher values of turn over number (K (cat)) and catalytic efficiency (K (cat)/K (m)) with birchwood xylan than oat spelt xylan. Bleach-boosting enzyme activity at 30 U/g dry pulp displayed the optimum bio-delignification of Kraft pulp resulting in 26.5% reduction in kappa number and 18.5% ISO induction in brightness at 55°C after 3 h treatment. The same treatment improved the pulp properties including tensile strength and burst index, demonstrating its potential application in pre-bleaching of Kraft pulp.
Assuntos
Bacillus/enzimologia , Proteínas de Bactérias/metabolismo , Triticum/química , Xilosidases/metabolismo , Proteínas de Bactérias/química , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Temperatura , Xilosidases/químicaRESUMO
Applying phosphate-solubilizing bacteria (PSB) as biofertilizers has enormous potential for sustainable agriculture. Despite this, there is still a lack of information regarding the expression of key genes related to phosphate-solubilization (PS) and efficient formulation strategies. In this study, we investigated rock PS by Ochrobactrum sp. SSR (DSM 109610) by relating it to bacterial gene expression and searching for an efficient formulation. The quantitative PCR (qPCR) primers were designed for PS marker genes glucose dehydrogenase (gcd), pyrroloquinoline quinone biosynthesis protein C (pqqC), and phosphatase (pho). The SSR-inoculated soil supplemented with rock phosphate (RP) showed a 6-fold higher expression of pqqC and pho compared to inoculated soil without RP. Additionally, an increase in plant phosphorous (P) (2%), available soil P (4.7%), and alkaline phosphatase (6%) activity was observed in PSB-inoculated plants supplemented with RP. The root architecture improved by SSR, with higher root length, diameter, and volume. Ochrobactrum sp. SSR was further used to design bioformulations with two well-characterized PS, Enterobacter spp. DSM 109592 and DSM 109593, using the four organic amendments, biochar, compost, filter mud (FM), and humic acid. All four carrier materials maintained adequate survival and inoculum shelf life of the bacterium, as indicated by the field emission scanning electron microscopy analysis. The FM-based bioformulation was most efficacious and enhanced not only wheat grain yield (4-9%) but also seed P (9%). Moreover, FM-based bioformulation enhanced soil available P (8.5-11%) and phosphatase activity (4-5%). Positive correlations were observed between the PSB solubilization in the presence of different insoluble P sources, and soil available P, soil phosphatase activity, seed P content, and grain yield of the field grown inoculated wheat variety Faisalabad-2008, when di-ammonium phosphate fertilizer application was reduced by 20%. This study reports for the first time the marker gene expression of an inoculated PSB strain and provides a valuable groundwork to design field scale formulations that can maintain inoculum dynamics and increase its shelf life. This may constitute a step-change in the sustainable cultivation of wheat under the P-deficient soil conditions.
RESUMO
BACKGROUND: Chamomile is an important herb being used widely for medicinal purposes. Its multitherapeutic, cosmetic, and nutritional values have been established through years of traditional and scientific use and research. Increased use of medicinal plants necessitates rational use as well as sustainable production of such genetic resources. Plant in vitro micro-propagation poses unique opportunities for sustainable production of medicinal herbs, their regrowth and conservation. The present study aimed to investigate the effects of different explants, plant growth regulators (PGRs) combinations and media type on callogenesis, in vitro regeneration and cell suspension of six chamomile genotypes to enhance its sustainable production. METHODS: The shoot, lateral sprout, and leaf derived explants of six chamomile genotypes including Isfahan, Shiraz, Kazeron, Goral, Sharokashari and Presso were used for direct and indirect regeneration. For indirect regeneration various doses of NAA and kinetin were used to induce calli which were cultured on MS media containing PGRs for direct and indirect regeneration. Later, cell suspension was established and morphological characterization of CrO3 stained cells was carried out using microscopy. RESULTS AND DISCUSSION: Our findings revealed that the highest callus percentage and callus volume were observed from lateral sprouts and shoots of genotype Isfahan on MS medium containing 1 mg/L NAA and 1 mg/L kinetin. The in vitro regeneration was found to be genotype dependent while 77% and 77.5% was the highest percentage for indirect and direct regeneration, respectively. Additionally, the maximum shoot number (two shoots/explant) and shoot length (2.22 cm) were also observed in Isfahan genotype. Cell suspension culture showed the highest fresh weight (18.59 g) and dry weight (1.707 g) with 0.75 g inoculum of the callus derived from lateral sprouts cultured on MS medium. Microscopy of CrO3 stained cells was carried on each 3rd day for 27 days that revealed larger and spongier cells in the early days as compared to final days when the cell number was greater but cell size was smaller. CONCLUSION: The callogenesis, organogenesis, and cell suspension culture of chamomile may be genotype dependent. Hence, optimization of media ingredients and culture conditions is of utmost importance for devising tissue culture based conservation strategy of any chamomile genotype and secondary metabolite production.
RESUMO
During and after the green revolution in the last century, agrochemicals especially nitrogen (N) were extensively used. However, it resulted in a remarkable increase in crop yield but drastically reduced soil fertility; increased the production cost, food prices, and carbon footprints; and depleted the fossil reserves with huge penalties to the environment and ecological sustainability. The groundwater, rivers, and oceans are loaded with N excess which is an environmental catastrophe. Nitrogen emissions (e.g., ammonia, nitrogen oxide, nitrous oxide) play an important role in global climate change and contribute to particulate matter and acid rain causing respiratory problems, cancers, and damage to forests and buildings. Therefore, the nitrogen-polluted planet Earth needs concerted global efforts to avoid the disaster. Improved agricultural N management focuses on the synchronization of crop N demand and N supply along with improving the N-use efficiency of the crops. However, there is very little focus on the natural sources of N available for plants in the form of diazotrophic bacteria present inside or on the root surface and the rhizosphere. These diazotrophs are the mini-nitrogen factories that convert available (78%) atmospheric N2 to ammonia through a process known as "biological nitrogen fixation" which is then taken up by the plants for its metabolic functioning. Diazotrophs also stimulate root architecture by producing plant hormones and hence improve the plant's overall ability to uptake nutrients and water. In recent years, nanotechnology has revolutionized the whole agri-industry by introducing nano-fertilizers and coated/slow-releasing fertilizers. With this in mind, we tried to explore the following questions: To what extent can the crop N requirements be met by diazotroph inoculation? Can N input to agriculture be managed in a way leading to environmental benefits and farmers saving money? Can nanotechnology help in technological advancement of diazotroph application? The review suggests that an integrated technology based on slow-releasing nano-fertilizer combined with diazotrophs should be adopted to decrease nitrogen inputs to the agricultural system. This integrated technology would minimize N pollution and N losses to much extent.
RESUMO
The present work was carried out to study the potential of plant rhizosphere associated bacteria for the biocontrol of potato black scurf disease caused by Rhizoctonia solani Khun AG-3. A total of twenty-eight bacteria isolated from diseased and healthy potato plants grown in the soil of Naran and Faisalabad, Pakistan were evaluated for their antagonistic potential. Nine bacterial strains were found to be antagonistic in vitro, reduced the fungal growth and caused the lysis of sclerotia of R. solani in dual culture assay as well as in extracellular metabolite efficacy test. The selected antagonistic strains were further tested for the production and efficacy of volatile and diffusible antibiotics, lytic enzymes and siderophores against R. solani. Selected antagonistic bacteria were also characterized for growth promoting attributes i.e., phosphate solubilization, nitrogen fixation and indole acetic acid production. Biocontrol efficacy and percent yield increase by these antagonists was estimated in greenhouse experiment. Statistical analysis showed that two Pseudomonas spp. StT2 and StS3 were the most effective with 65.1 and 73.9 percent biocontrol efficacy, as well as 87.3 and 98.3 percent yield increase, respectively. Potential antagonistic bacterial strain StS3 showed maximum homology to Pseudomonas sp. as determined by 16S rRNA gene sequencing. These results suggest that bacterial isolates StS3 and StT2 have excellent potential to be used as effective biocontrol agents promoting plant growth with reduced disease incidence.
RESUMO
This research work aims to develop a deep learning-based crop classification framework for remotely sensed time series data. Tobacco is a major revenue generating crop of Khyber Pakhtunkhwa (KP) province of Pakistan, with over 90% of the country's Tobacco production. In order to analyze the performance of the developed classification framework, a pilot sub-region named Yar Hussain is selected for experimentation work. Yar Hussain is a tehsil of district Swabi, within KP province of Pakistan, having highest contribution to the gross production of the KP Tobacco crop. KP generally consists of a diverse crop land with different varieties of vegetation, having similar phenology which makes crop classification a challenging task. In this study, a temporal convolutional neural network (TempCNNs) model is implemented for crop classification, while considering remotely sensed imagery of the selected pilot region with specific focus on the Tobacco crop. In order to improve the performance of the proposed classification framework, instead of using the prevailing concept of utilizing a single satellite imagery, both Sentinel-2 and Planet-Scope imageries are stacked together to assist in providing more diverse features to the proposed classification framework. Furthermore, instead of using a single date satellite imagery, multiple satellite imageries with respect to the phenological cycle of Tobacco crop are temporally stacked together which resulted in a higher temporal resolution of the employed satellite imagery. The developed framework is trained using the ground truth data. The final output is obtained as an outcome of the SoftMax function of the developed model in the form of probabilistic values, for the classification of the selected classes. The proposed deep learning-based crop classification framework, while utilizing multi-satellite temporally stacked imagery resulted in an overall classification accuracy of 98.15%. Furthermore, as the developed classification framework evolved with specific focus on Tobacco crop, it resulted in best Tobacco crop classification accuracy of 99%.
Assuntos
Agricultura/métodos , Aprendizado Profundo , Nicotiana/classificação , Imagens de Satélites/métodos , Verduras/classificação , Confiabilidade dos Dados , Humanos , Paquistão , Triticum/classificaçãoRESUMO
Plant growth-promoting rhizobacteria are under extensive investigation to supplement the chemical fertilizers due to cost-effective and eco-friendly nature. However, their consistency in heterogeneous soil and diverse ecological settings is unclear. The current study presents in vitro and field evaluation of pre-characterized PGPR strain Enterobacter sp. Fs-11 (GenBank accession # GQ179978) in terms of its potential to enhance sunflower yield and oil contents under diverse environmental conditions. Under in vitro conditions, strain Fs-11 showed optimal growth at a range of temperature (15 to 40 °C) and pH values (6.5 to 8.5). Extracellular and intracellular localizations of the strain Fs-11 in sunflower root cortical cells through transmission electron microscopy confirmed its epiphytic and endophytic colonization patterns, respectively. In field experiments, conducted at three different agro-climatic locations, inoculation of strain Fs-11 at 50% reduced NP fertilizer resulted in a significant increase in growth, achene yield, nutrient uptake, and oil contents. Inoculation also responded significantly in terms of increase in mono- and polyunsaturated fatty acids (oleic and linoleic acids, respectively) without rising saturated fatty acid (palmitic and stearic acids) contents. We concluded that Enterobacter sp. Fs-11 is a potential candidate for biofertilizer formulations to supplement chemical fertilizer requirements of sunflower crop under diverse climatic conditions.
Assuntos
Enterobacter/metabolismo , Fertilizantes/análise , Helianthus/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Rhizobiaceae/metabolismo , Enterobacter/classificação , Ácidos Graxos/metabolismo , Helianthus/metabolismo , Paquistão , Raízes de Plantas/metabolismoRESUMO
BACKGROUND: Increasing population and industrialization are continuously oppressing the existing energy resources and depleting the global fuel reservoirs. The elevated pollutions from the continuous consumption of non-renewable fossil fuels also seriously contaminating the surrounding environment. The use of alternate energy sources can be an environment-friendly solution to cope these challenges. Among the renewable energy sources biofuels (biomass-derived fuels) can serve as a better alternative to reduce the reliance on non-renewable fossil fuels. Bioethanol is one of the most widely consumed biofuels of today's world. OBJECTIVE: The main objective of this review is to highlight the significance of lignocellulosic biomass as a potential source for the production of biofuels like bioethanol, biodiesel or biogas. METHODS: We discuss the application of various methods for the bioconversion of lignocellulosic biomass to end products i.e. biofuels. The lignocellulosic biomass must be pretreated to disintegrate lignocellulosic complexes and to expose its chemical components for downstream processes. After pretreatment, the lignocellulosic biomass is then subjected to saccharification either via acidic or enzymatic hydrolysis. Thereafter, the monomeric sugars resulted from hydrolysis step are further processed into biofuel i.e. bioethanol, biodiesel or butanol etc. through the fermentation process. The fermented impure product is then purified through the distillation process to obtain pure biofuel. CONCLUSION: Renewable energy sources represent the potential fuel alternatives to overcome the global energy crises in a sustainable and eco-friendly manner. In future, biofuels may replenish the conventional non-renewable energy resources due to their renewability and several other advantages. Lignocellulosic biomass offers the most economical biomass to generate biofuels. However, extensive research is required for the commercial production of an efficient integrated biotransformation process for the production of lignocellulose mediated biofuels.
Assuntos
Biocombustíveis , Biomassa , Biotecnologia/métodos , Lignina/química , Catálise , Fermentação , Hidrólise , Lignina/metabolismoRESUMO
Mutualistic interactions can strongly influence species invasions, as the inability to form successful mutualisms in an exotic range could hamper a host's invasion success. This barrier to invasion may be overcome if an invader either forms novel mutualistic associations or finds and associates with familiar mutualists in the exotic range. Here, we ask (1) does the community of rhizobial mutualists associated with invasive legumes in their exotic range overlap with that of local native legumes and (2) can any differences be explained by fundamental incompatibilities with particular rhizobial genotypes? To address these questions, we first characterized the rhizobial communities naturally associating with three invasive and six native legumes growing in the San Francisco Bay Area. We then conducted a greenhouse experiment to test whether the invasive legume could nodulate with any of a broad array of rhizobia found in their exotic range. There was little overlap between the Bradyrhizobium communities associated with wild-grown invasive and native legumes, yet the invasive legumes could nodulate with a broad range of rhizobial strains under greenhouse conditions. These observations suggest that under field conditions in their exotic range, these invasive legumes are not currently associating with the mutualists of local native legumes, despite their potential to form such associations. However, the promiscuity with which these invading legumes can form mutualistic associations could be an important factor early in the invasion process if mutualist scarcity limits range expansion. Overall, the observation that invasive legumes have a community of rhizobia distinct from that of native legumes, despite their ability to associate with many rhizobial strains, challenges existing assumptions about how invading species obtain their mutualists. These results can therefore inform current and future efforts to prevent and remove invasive species.
RESUMO
Soil salinity severely affects plant nutrient use efficiency and is a worldwide constraint for sustainable crop production. Plant growth-promoting rhizobacteria, with inherent salinity tolerance, are able to enhance plant growth and productivity by inducing modulations in various metabolic pathways. In the present study, we reported the isolation and characterization of a salt-tolerant rhizobacterium from Kallar grass [Leptochloa fusca (L.) Kunth]. Sequencing of the 16S rRNA gene revealed its lineage to Staphylococcus sciuri and it was named as SAT-17. The strain exhibited substantial potential of phosphate solubilization as well as indole-3-acetic acid production (up to 2 M NaCl) and 1-aminocyclopropane-1-carboxylic acid deaminase activity (up to 1.5 M NaCl). Inoculation of a rifampicin-resistant derivative of the SAT-17 with maize, in the absence of salt stress, induced a significant increase in plant biomass together with decreased reactive oxygen species and increased activity of cellular antioxidant enzymes. The derivative strain also significantly accumulated nutrients in roots and shoots, and enhanced chlorophyll and protein contents in comparison with non-inoculated plants. Similar positive effects were observed in the presence of salt stress, although the effect was more prominent at 75 mM in comparison to higher NaCl level (150 mM). The strain survived in the rhizosphere up to 30 days at an optimal population density (ca. 1 × 10(6) CFU mL(-1)). It was concluded that S. sciuri strain SAT-17 alleviated maize plants from salt-induced cellular oxidative damage and enhanced growth. Further field experiments should be conducted, considering SAT-17 as a potential bio-fertilizer, to draw parallels between PGPR inoculation, elemental mobility patterns, crop growth and productivity in salt-stressed semi-arid and arid regions.