Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 122(10): 106405, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30932657

RESUMO

Twisted bilayer graphene (TBG) was recently shown to host superconductivity when tuned to special "magic angles" at which isolated and relatively flat bands appear. However, until now the origin of the magic angles and their irregular pattern have remained a mystery. Here we report on a fundamental continuum model for TBG which features not just the vanishing of the Fermi velocity, but also the perfect flattening of the entire lowest band. When parametrized in terms of α∼1/θ, the magic angles recur with a remarkable periodicity of Δα≃3/2. We show analytically that the exactly flat band wave functions can be constructed from the doubly periodic functions composed of ratios of theta functions-reminiscent of quantum Hall wave functions on the torus. We further report on the unusual robustness of the experimentally relevant first magic angle, address its properties analytically, and discuss how lattice relaxation effects help justify our model parameters.

2.
Phys Rev Lett ; 122(1): 011601, 2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-31012729

RESUMO

We study the quantum mechanics of three-index Majorana fermions ψ^{abc} governed by a quartic Hamiltonian with O(N)^{3} symmetry. Similarly to the Sachdev-Ye-Kitaev model, this tensor model has a solvable large-N limit dominated by the melonic diagrams. For N=4 the total number of states is 2^{32}, but they naturally break up into distinct sectors according to the charges under the U(1)×U(1) Cartan subgroup of one of the O(4) groups. The biggest sector has vanishing charges and contains over 165 million states. Using a Lanczos algorithm, we determine the spectrum of the low-lying states in this and other sectors. We find that the absolute ground state is nondegenerate. If the SO(4)^{3} symmetry is gauged, it is known from earlier work that the model has 36 states and a residual discrete symmetry. We study the discrete symmetry group in detail; it gives rise to degeneracies of some of the gauge singlet energies. We find all the gauge singlet energies numerically and use the results to propose exact analytic expressions for them.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA