Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mutat ; 35(11): 1311-20, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25137640

RESUMO

MED13L is a component subunit of the Mediator complex, an important regulator of transcription that is highly conserved across eukaryotes. Here, we report MED13L disruption in a translocation t(12;19) breakpoint of a patient with Pierre-Robin syndrome, moderate intellectual disability, craniofacial anomalies, and muscular defects. The phenotype is similar to previously described patients with MED13L haploinsufficiency. Knockdown of MED13L orthologue in zebrafish, med13b, showed early defective migration of cranial neural crest cells (NCCs) that contributed to cartilage structure deformities in the later stage, recapitulating craniofacial anomalies seen in human patients. Notably, we observed abnormal distribution of developing neurons in different brain regions of med13b morphant embryos, which could be rescued upon introduction of full-length human MED13L mRNA. To compare with mammalian system, we suppressed MED13L expression by short-hairpin RNA in ES-derived human neural progenitors, and differentiated them into neurons. Transcriptome analysis revealed differential expression of components of Wnt and FGF signaling pathways in MED13L-deficient neurons. Our finding provides a novel insight into the mechanism of overlapping phenotypic outcome targeting NCCs derivatives organs in patients with MED13L haploinsufficiency, and emphasizes a clinically recognizable syndromic phenotype in these patients.


Assuntos
Haploinsuficiência , Deficiência Intelectual/genética , Complexo Mediador/genética , Crista Neural/metabolismo , Animais , Diferenciação Celular/genética , Movimento Celular/genética , Pré-Escolar , Pontos de Quebra do Cromossomo , Modelos Animais de Doenças , Células-Tronco Embrionárias/metabolismo , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Estudos de Associação Genética , Humanos , Deficiência Intelectual/diagnóstico , Complexo Mediador/metabolismo , Crista Neural/embriologia , Neurônios/citologia , Neurônios/metabolismo , Fenótipo , RNA Mensageiro/genética , Análise de Sequência de DNA , Transcriptoma , Translocação Genética , Peixe-Zebra
2.
Pediatr Neurol ; 150: 57-62, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37979305

RESUMO

BACKGROUND: Neurological complications with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) omicron variant have been reported in adults; however, there are little data in the pediatric population. We aimed to report on the prevalence and clinical characteristics of children with neurological symptoms during the SARS-CoV-2 omicron wave. METHODS: This was a single-center, retrospective cohort review of children (<18 years old) hospitalized for SARS-CoV-2 infection from December 2, 2021, to June 30, 2022. RESULTS: During the study period, 455 children (mean age 4.8 years, range 0.67 to 18, male 58.9%) were hospitalized with SARS-CoV-2 infection. A total of 108 (23.7%) children experienced neurological symptoms; most common were seizures (62.0%), headaches (32.4%) and giddiness (14.8%). Seizures included febrile seizures (64.1%), acute symptomatic seizures (17.9%), and breakthrough seizures in known epileptics (17.9%). Children with neurological manifestations were older (7.3 vs 4.0 years, P < 0.00001), more likely to have underlying epilepsy (9.3% vs 1.2%, P = 0.0002) or neurodevelopmental disorders (17.6% vs 1.7%, P < 0.00001), and presented earlier in their illness (2.1 vs 2.8 days, P < 0.00001), compared with those without neurological manifestations. Neurological symptoms fully resolved in all but one patient at discharge. There were no mortalities and no difference in duration of hospitalization (3.1 vs 3.7 days, P = 0.5) between the groups. CONCLUSIONS: One in four hospitalized children with SARS-CoV-2 infection when omicron variant was dominant experienced mild neurological symptoms. Overall risk factors for neurological symptoms associated with SARS-CoV-2 included older age, pre-existing febrile seizures/epilepsy and neurodevelopmental disorders.


Assuntos
COVID-19 , Epilepsia , Convulsões Febris , Criança , Adulto , Masculino , Humanos , Lactente , Pré-Escolar , Adolescente , COVID-19/complicações , SARS-CoV-2 , Criança Hospitalizada , Singapura/epidemiologia , Estudos Retrospectivos , Epilepsia/epidemiologia , Epilepsia/etiologia
3.
Nat Metab ; 6(3): 433-447, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38504132

RESUMO

Mitochondrial dysfunction and low nicotinamide adenine dinucleotide (NAD+) levels are hallmarks of skeletal muscle ageing and sarcopenia1-3, but it is unclear whether these defects result from local changes or can be mediated by systemic or dietary cues. Here we report a functional link between circulating levels of the natural alkaloid trigonelline, which is structurally related to nicotinic acid4, NAD+ levels and muscle health in multiple species. In humans, serum trigonelline levels are reduced with sarcopenia and correlate positively with muscle strength and mitochondrial oxidative phosphorylation in skeletal muscle. Using naturally occurring and isotopically labelled trigonelline, we demonstrate that trigonelline incorporates into the NAD+ pool and increases NAD+ levels in Caenorhabditis elegans, mice and primary myotubes from healthy individuals and individuals with sarcopenia. Mechanistically, trigonelline does not activate GPR109A but is metabolized via the nicotinate phosphoribosyltransferase/Preiss-Handler pathway5,6 across models. In C. elegans, trigonelline improves mitochondrial respiration and biogenesis, reduces age-related muscle wasting and increases lifespan and mobility through an NAD+-dependent mechanism requiring sirtuin. Dietary trigonelline supplementation in male mice enhances muscle strength and prevents fatigue during ageing. Collectively, we identify nutritional supplementation of trigonelline as an NAD+-boosting strategy with therapeutic potential for age-associated muscle decline.


Assuntos
Alcaloides , Sarcopenia , Humanos , Masculino , Camundongos , Animais , Sarcopenia/tratamento farmacológico , Sarcopenia/prevenção & controle , Sarcopenia/metabolismo , NAD/metabolismo , Caenorhabditis elegans , Envelhecimento , Músculo Esquelético/metabolismo , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Alcaloides/metabolismo
4.
Hum Mol Genet ; 20(22): 4430-9, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21856731

RESUMO

Glycogen storage disease type IV (GSD IV) is a rare autosomal recessive disorder caused by deficiency of the glycogen branching enzyme (GBE). The diagnostic feature of the disease is the accumulation of a poorly branched form of glycogen known as polyglucosan (PG). The disease is clinically heterogeneous, with variable tissue involvement and age of disease onset. Absence of enzyme activity is lethal in utero or in infancy affecting primarily muscle and liver. However, residual enzyme activity (5-20%) leads to juvenile or adult onset of a disorder that primarily affects muscle as well as central and peripheral nervous system. Here, we describe two mouse models of GSD IV that reflect this spectrum of disease. Homologous recombination was used to insert flippase recognition target recombination sites around exon 7 of the Gbe1 gene and a phosphoglycerate kinase-Neomycin cassette within intron 7, leading to a reduced synthesis of GBE. Mice bearing this mutation (Gbe1(neo/neo)) exhibit a phenotype similar to juvenile onset GSD IV, with wide spread accumulation of PG. Meanwhile, FLPe-mediated homozygous deletion of exon 7 completely eliminated GBE activity (Gbe1(-/-)), leading to a phenotype of lethal early onset GSD IV, with significant in utero accumulation of PG. Adult mice with residual GBE exhibit progressive neuromuscular dysfunction and die prematurely. Differently from muscle, PG in liver is a degradable source of glucose and readily depleted by fasting, emphasizing that there are structural and regulatory differences in glycogen metabolism among tissues. Both mouse models recapitulate typical histological and physiological features of two human variants of branching enzyme deficiency.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana/genética , Doença de Depósito de Glicogênio Tipo IV/genética , Animais , Modelos Animais de Doenças , Glucanos , Glicogênio/metabolismo , Doença de Depósito de Glicogênio Tipo IV/metabolismo , Camundongos
5.
Ann Hum Genet ; 77(5): 435-63, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23879295

RESUMO

Spinal muscular atrophy (SMA) is a common neuromuscular disorder with autosomal recessive inheritance, resulting in the degeneration of motor neurons. The incidence of the disease has been estimated at 1 in 6000-10,000 newborns with a carrier frequency of 1 in 40-60. SMA is caused by mutations of the SMN1 gene, located on chromosome 5q13. The gene product, survival motor neuron (SMN) plays critical roles in a variety of cellular activities. SMN2, a homologue of SMN1, is retained in all SMA patients and generates low levels of SMN, but does not compensate for the mutated SMN1. Genetic analysis demonstrates the presence of homozygous deletion of SMN1 in most patients, and allows screening of heterozygous carriers in affected families. Considering high incidence of carrier frequency in SMA, population-wide newborn and carrier screening has been proposed. Although no effective treatment is currently available, some treatment strategies have already been developed based on the molecular pathophysiology of this disease. Current treatment strategies can be classified into three major groups: SMN2-targeting, SMN1-introduction, and non-SMN targeting. Here, we provide a comprehensive and up-to-date review integrating advances in molecular pathophysiology and diagnostic testing with therapeutic developments for this disease including promising candidates from recent clinical trials.


Assuntos
Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Proteínas do Complexo SMN/genética , Animais , Ensaios Clínicos como Assunto , Dosagem de Genes , Testes Genéticos , Humanos , Atrofia Muscular Espinal/diagnóstico , Mutação , Proteínas do Complexo SMN/metabolismo
6.
N Engl J Med ; 362(22): 2092-101, 2010 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-20484391

RESUMO

BACKGROUND: The interleukin-2-mediated immune response is critical for host defense against infectious pathogens. Cytokine-inducible SRC homology 2 (SH2) domain protein (CISH), a suppressor of cytokine signaling, controls interleukin-2 signaling. METHODS: Using a case-control design, we tested for an association between CISH polymorphisms and susceptibility to major infectious diseases (bacteremia, tuberculosis, and severe malaria) in blood samples from 8402 persons in Gambia, Hong Kong, Kenya, Malawi, and Vietnam. We had previously tested 20 other immune-related genes in one or more of these sample collections. RESULTS: We observed associations between variant alleles of multiple CISH polymorphisms and increased susceptibility to each infectious disease in each of the study populations. When all five single-nucleotide polymorphisms (SNPs) (at positions -639, -292, -163, +1320, and +3415 [all relative to CISH]) within the CISH-associated locus were considered together in a multiple-SNP score, we found an association between CISH genetic variants and susceptibility to bacteremia, malaria, and tuberculosis (P=3.8x10(-11) for all comparisons), with -292 accounting for most of the association signal (P=4.58x10(-7)). Peripheral-blood mononuclear cells obtained from adult subjects carrying the -292 variant, as compared with wild-type cells, showed a muted response to the stimulation of interleukin-2 production--that is, 25 to 40% less CISH expression. CONCLUSIONS: Variants of CISH are associated with susceptibility to diseases caused by diverse infectious pathogens, suggesting that negative regulators of cytokine signaling have a role in immunity against various infectious diseases. The overall risk of one of these infectious diseases was increased by at least 18% among persons carrying the variant CISH alleles.


Assuntos
Bacteriemia/genética , Predisposição Genética para Doença , Malária/genética , Polimorfismo de Nucleotídeo Único , Proteínas Supressoras da Sinalização de Citocina/genética , Tuberculose/genética , Adulto , Estudos de Casos e Controles , Criança , Expressão Gênica , Genótipo , Humanos , Interleucina-2/fisiologia , Desequilíbrio de Ligação , Razão de Chances , Risco , Proteínas Supressoras da Sinalização de Citocina/metabolismo
7.
J Cachexia Sarcopenia Muscle ; 14(3): 1482-1494, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37143433

RESUMO

BACKGROUND: Mitochondrial dysfunction has been implicated in sarcopenia. 31 P magnetic resonance spectroscopy (MRS) enables non-invasive measurement of adenosine triphosphate (ATP) synthesis rates to probe mitochondrial function. Here, we assessed muscle energetics in older sarcopenic and non-sarcopenic men and compared with muscle biopsy-derived markers of mitochondrial function. METHODS: Twenty Chinese men with sarcopenia (SARC, age = 73.1 ± 4.1 years) and 19 healthy aged and sex-matched controls (CON, age = 70.3 ± 4.2 years) underwent assessment of strength, physical performance, and magnetic resonance imaging. Concentrations of phosphocreatine (PCr), ATP and inorganic phosphate (Pi) as well as muscle pH were measured at rest and during an interleaved rest-exercise protocol to probe muscle mitochondrial function. Results were compared to biopsy-derived mitochondrial complex activity and expression to understand underlying metabolic perturbations. RESULTS: Despite matched muscle contractile power (strength/cross-sectional area), the ATP contractile cost was higher in SARC compared with CON (low-intensity exercise: 1.06 ± 0.59 vs. 0.57 ± 0.22, moderate: 0.93 ± 0.43 vs. 0.58 ± 0.68, high: 0.70 ± 0.57 vs. 0.43 ± 0.51 mmol L-1  min-1  bar-1  cm-2 , P = 0.003, <0.0001 and <0.0001, respectively). Post-exercise mitochondrial oxidative synthesis rates (a marker of mitochondrial function) tended to be longer in SARC but did not reach significance (17.3 ± 6.4 vs. 14.6 ± 6.5 mmol L-1  min-1 , P = 0.2). However, relative increases in end-exercise ADP in SARC (31.8 ± 9.9 vs. 24.0 ± 7.3 mmol L-1 , P = 0.008) may have been a compensatory mechanism. Mitochondrial complex activity was found to be associated with exercise-induced drops in PCr [citrate synthetase activity (CS), Spearman correlation rho = -0.42, P = 0.03] and end-exercise ADP (complex III, rho = -0.52, P = 0.01; CS rho = -0.45, P = 0.02; SDH rho = -0.45, P = 0.03), with CS also being strongly associated with the PCr recovery rate following low intensity exercise (rho = -0.47, P = 0.02), and the cost of contraction at high intensity (rho = -0.54, P = 0.02). Interestingly, at high intensity, the fractional contribution of oxidative phosphorylation to exercise was correlated with activity in complex II (rho = 0.5, P = 0.03), CS (rho = 0.47, P = 0.02) and SDH (rho = 0.46, P = 0.03), linking increased mitochondrial complex activity with increased ability to generate energy through oxidative pathways. CONCLUSIONS: This study used 31 P MRS to assess ATP utilization and resynthesis in sarcopenic muscle and demonstrated abnormal increases in the energy cost during exercise and perturbed mitochondrial energetics in recovery. Associations between mitochondrial complex activity and the fractional contribution to energy requirement during exercise indicate increased ability to generate energy oxidatively in those with better mitochondrial complex activity.


Assuntos
Músculo Esquelético , Sarcopenia , Masculino , Humanos , Idoso , Músculo Esquelético/metabolismo , Metabolismo Energético/fisiologia , Trifosfato de Adenosina/metabolismo , Sarcopenia/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Mitocôndrias/metabolismo , Difosfato de Adenosina/metabolismo
8.
Mol Genet Metab ; 102(3): 364-7, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21185756

RESUMO

Mutations in the Conserved Oligomeric Golgi (COG) complex give rise to type II congenital disorders of glycosylation (CDG). Thus far, mutations have been identified in 6 of the 8 COG subunits. Here we present data identifying a previously reported CDG-IIx case from Singapore as a new COG4 patient with 2 novel mutations leading to p.E233X and p.L773R; with p.E233X being a de novo mutation. As a result, COG4 protein expression was dramatically reduced, while expression of the other subunits remained unaffected. Analysis of serum N-glycans revealed deficiencies in both sialylation and galactosylation. Furthermore, patient fibroblasts have impaired O-glycosylation. Importantly, patient fibroblasts exhibited a delay in Brefeldin A (BFA) induced retrograde transport, a common characteristic seen in COG deficiencies.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/metabolismo , Brefeldina A/farmacologia , Defeitos Congênitos da Glicosilação/fisiopatologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Teste de Complementação Genética , Complexo de Golgi/metabolismo , Complexo de Golgi/patologia , Humanos , Lentivirus/genética , Mutação , Polissacarídeos/análise , Inibidores da Síntese de Proteínas/farmacologia , Transporte Proteico/efeitos dos fármacos , Singapura
9.
Anal Biochem ; 410(1): 158-60, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21111703

RESUMO

Heteroduplex formation, required for the complete detection of hemi/homozygotes using high-resolution melting analysis, can be induced either by pre-PCR mixing of genomic DNAs or by post-PCR mixing of PCR products from unknown and reference samples. This study investigates the effects of both methods using two single nucleotide polymorphisms in X-linked DMD gene. The results show that both methods resulted in the same effect when mixing samples with the same gene copy number. Mixing samples with different gene copy numbers has not been previously explored and we show that post-PCR mixing is insensitive to gene copy number differences as compared to pre-PCR mixing.


Assuntos
Hemizigoto , Homozigoto , Ácidos Nucleicos Heteroduplexes/química , Ácidos Nucleicos Heteroduplexes/genética , DNA/química , DNA/genética , Dosagem de Genes , Análise Heteroduplex , Humanos , Distrofia Muscular de Duchenne/genética , Desnaturação de Ácido Nucleico , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único/genética , Temperatura de Transição
10.
J Mol Diagn ; 23(8): 941-951, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34111553

RESUMO

Moderate to hyper-expansion of trinucleotide repeats at the FRAXA and FRAXE fragile sites, with or without concurrent hypermethylation, has been associated with intellectual disability and other conditions. Unlike molecular diagnosis of FMR1 CGG repeat expansions in FRAXA, current detection of AFF2 CCG repeat expansions in FRAXE relies on low-throughput and otherwise inefficient techniques combining Southern blot analysis and PCR. A novel triplet-primed PCR assay was developed for simultaneous screening for trinucleotide repeat expansions at the FRAXA and FRAXE fragile sites, and was validated using archived clinical samples of known FMR1 and AFF2 genotypes. Population samples and FRAXE-affected samples were sequenced for the evaluation of variations in the AFF2 CCG repeat structure. The duplex assay accurately identified expansions at the FMR1 and AFF2 trinucleotide repeat loci. On Sanger sequencing of the AFF2 CCG repeat, the single-nucleotide polymorphism variant rs868914124(C) that effectively adds two CCG repeats at the 5'-end, was enriched in the Malay population and with short repeats (<11 CCGs), and was present in all six expanded AFF2 alleles of this study. All expanded AFF2 alleles contained multiple non-CCG interruptions toward the 5'-end of the repeat. A sensitive, robust, and rapid assay has been developed for the simultaneous detection of expansion mutations at the FMR1 and AFF2 trinucleotide repeat loci, simplifying screening for FRAXA- and FRAXE-associated disorders.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/diagnóstico , Síndrome do Cromossomo X Frágil/genética , Reação em Cadeia da Polimerase Multiplex/métodos , Proteínas Nucleares/genética , Expansão das Repetições de Trinucleotídeos , Alelos , Eletroforese Capilar , Estudos de Associação Genética , Predisposição Genética para Doença , Testes Genéticos/métodos , Humanos , Reprodutibilidade dos Testes
11.
Nat Commun ; 10(1): 5808, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31862890

RESUMO

The causes of impaired skeletal muscle mass and strength during aging are well-studied in healthy populations. Less is known on pathological age-related muscle wasting and weakness termed sarcopenia, which directly impacts physical autonomy and survival. Here, we compare genome-wide transcriptional changes of sarcopenia versus age-matched controls in muscle biopsies from 119 older men from Singapore, Hertfordshire UK and Jamaica. Individuals with sarcopenia reproducibly demonstrate a prominent transcriptional signature of mitochondrial bioenergetic dysfunction in skeletal muscle, with low PGC-1α/ERRα signalling, and downregulation of oxidative phosphorylation and mitochondrial proteostasis genes. These changes translate functionally into fewer mitochondria, reduced mitochondrial respiratory complex expression and activity, and low NAD+ levels through perturbed NAD+ biosynthesis and salvage in sarcopenic muscle. We provide an integrated molecular profile of human sarcopenia across ethnicities, demonstrating a fundamental role of altered mitochondrial metabolism in the pathological loss of skeletal muscle mass and function in older people.


Assuntos
Envelhecimento/fisiologia , Mitocôndrias/patologia , Músculo Esquelético/patologia , NAD/biossíntese , Sarcopenia/patologia , Idoso , Idoso de 80 Anos ou mais , Biópsia , Estudos de Casos e Controles , Metabolismo Energético/fisiologia , Humanos , Jamaica , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Oxirredução , Fosforilação Oxidativa , Estresse Oxidativo/fisiologia , Proteostase , Sarcopenia/etnologia , Singapura , Reino Unido
12.
Pediatr Neurol ; 39(6): 426-8, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19027590

RESUMO

The use of lipid-lowering statins has been associated with raised serum muscle enzymes and, occasionally, with rhabdomyolysis, especially in patients with pre-existing metabolic myopathies. The A3243G mutation is one of the most common mutations associated with mitochondrial disorders. A teenager harboring the A3243G mutation had the unusual association of hereditary glomerulopathy and recurrent episodes of raised creatine kinase levels with the use of lipid-lowering agents. Muscle biopsy showed both normal respiratory chain enzyme activities and normal coenzyme Q(10) levels, although decreased muscle coenzyme Q(10) concentration had been postulated to have a pathogenic role in statin-related myopathies. The close temporal relationship of statin administration and raised creatine kinase levels in this patient suggests caution in the use of statins in children and teenagers with mitochondrial myopathies.


Assuntos
Anticolesterolemiantes/efeitos adversos , DNA Mitocondrial/genética , Lovastatina/efeitos adversos , Síndrome MELAS/genética , Doenças Musculares/induzido quimicamente , Mutação/genética , Adolescente , Creatina Quinase/metabolismo , Saúde da Família , Feminino , Humanos , Síndrome MELAS/tratamento farmacológico , Síndrome MELAS/fisiopatologia , Debilidade Muscular/induzido quimicamente , Debilidade Muscular/genética
13.
Pediatr Neurol ; 36(6): 414-7, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17560506

RESUMO

Both the syndrome of mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS syndrome) and Hashimoto's encephalopathy can present with nonspecific encephalopathy. Hashimoto's encephalopathy is an association of steroid-responsive encephalopathy with elevated thyroid peroxidase antibodies. Steroid-responsive encephalopathy, however, is not characteristic of the MELAS syndrome, which typically presents with stroke-like episodes and lactic acidosis in cerebrospinal fluid and blood. Here, a patient is described with goiter, recurrent encephalopathy and elevated thyroid peroxidase antibodies who apparently responded to steroid therapy; however, magnetic resonance imaging was atypical for Hashimoto's encephalopathy, and she was diagnosed with MELAS syndrome. This syndrome can present with apparent steroid-responsive encephalopathy and elevated thyroid peroxidase antibodies, mimicking Hashimoto's encephalopathy, and should be suspected if lactic acidosis is present and typical features are detected on magnetic resonance imaging.


Assuntos
Autoanticorpos/sangue , Doença de Hashimoto/complicações , Doença de Hashimoto/imunologia , Iodeto Peroxidase/imunologia , Síndrome MELAS/complicações , Acidose Láctica/etiologia , Encéfalo/patologia , Criança , Imagem de Difusão por Ressonância Magnética , Feminino , Humanos , Espectroscopia de Ressonância Magnética , Acidente Vascular Cerebral/etiologia
14.
J Neurol Sci ; 228(1): 93-7, 2005 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-15607216

RESUMO

Three patients with different clinical phenotypes harbored the same point mutation at nucleotide 14709 (T14709C) in the tRNAGlu gene of mitochondrial DNA (mtDNA). The first patient was a 21-month-old child with severe congenital myopathy, respiratory distress and mild mental retardation. Muscle biopsy showed about 12% cytochrome c oxidase (COX)-negative ragged-red fibers (RRFs), and markedly decreased activities of mitochondrial respiratory chain complexes I, III and IV. The other two patients were 51- and 55-year-old siblings with slowly progressive myopathy and diabetes mellitus. Muscle biopsy showed focal COX-negative RRFs and decreased activities of complexes I, III and IV. In all three patients, the T14709C mutation was abundant in muscle but present at lower levels in accessible tissues. Previously described patients with the same mutation also showed congenital or late-onset myopathy. Diabetes is frequently associated with both phenotypes and is a clinical clue to the molecular diagnosis.


Assuntos
DNA Mitocondrial/genética , Miopatias Mitocondriais/genética , Mutação Puntual , Cisteína/genética , Deficiência de Citocromo-c Oxidase , Análise Mutacional de DNA/métodos , Complicações do Diabetes/complicações , Complicações do Diabetes/genética , Complexo I de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Miopatias Mitocondriais/complicações , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , RNA de Transferência/genética , Treonina/genética
15.
J Child Neurol ; 20(8): 670-4, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16225813

RESUMO

Mutations in the SURF1 gene are the most frequent causes of Leigh disease with cytochrome c oxidase deficiency. We describe four children with novel SURF1 mutations and unusual features: three had prominent renal symptoms and one had ragged red fibers in the muscle biopsy. We identified five pathogenic mutations in SURF1: two mutations were novel, an in-frame nonsense mutation (834G-->A) and an out-of-frame duplication (820-824dupTACAT). Although renal manifestations have not been described in association with SURF1 mutations, they can be part of the clinical presentation. Likewise, mitochondrial proliferation in muscle (with ragged red fibers) is most unusual in Leigh disease but might be part of an emerging phenotype.


Assuntos
Deficiência de Citocromo-c Oxidase/complicações , Deficiência de Citocromo-c Oxidase/genética , Doença de Leigh/complicações , Doença de Leigh/genética , Proteínas/genética , Deficiência de Citocromo-c Oxidase/patologia , Análise Mutacional de DNA , Feminino , Mutação da Fase de Leitura , Humanos , Lactente , Recém-Nascido , Nefropatias/etiologia , Doença de Leigh/patologia , Masculino , Proteínas de Membrana , Proteínas Mitocondriais , Músculo Esquelético/patologia , Fenótipo
16.
J Child Neurol ; 20(2): 142-6, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15794182

RESUMO

The majority of patients with MELAS (mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes) have the A3243G point mutation. The much rarer T3271C mutation has been reported predominantly in Japanese subjects. Our objective was to better define the clinical phenotype and mutation load in patients with MELAS and the T3271C mutation in mitochondrial DNA. We present clinical and molecular genetic data in two pedigrees with the T3271C mutation. The age at onset was 8 years in one proband and 14 years in the other. Both patients had migrainelike headache, seizures, and strokelike episodes. Mutation loads were quantified in multiple tissues from the patients and from family members by polymerase chain reaction-restriction fragment length polymorphism analysis. The symptoms in both probands were typical of MELAS, and, contrary to previous reports, onset was early. Hearing loss was less common than in typical MELAS, and ragged red fibers were absent. The proportion of mutant genomes was consistently and markedly greater in DNA from urinary sediment than from blood. In the mother of one proband, mutant genomes were detected only in DNA from hair follicles and cheek mucosa The phenotype of patients with the T3271C mutation might not be as distinct as that of the A3243G mutation, as previously described. Our data also suggest that urine is a better source of DNA than blood for diagnosis and that multiple tissues should be studied in maternal relatives, especially when the mutation cannot be detected in blood.


Assuntos
DNA Mitocondrial/genética , Síndrome MELAS/genética , Mutação Puntual/genética , Adolescente , Idade de Início , Encéfalo/patologia , Criança , Feminino , Humanos , Síndrome MELAS/complicações , Síndrome MELAS/patologia , Masculino , Músculo Esquelético/patologia , Linhagem , Fenótipo
17.
Arch Neurol ; 61(6): 950-2, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15210538

RESUMO

BACKGROUND: SCO2 is a cytochrome c oxidase (COX) assembly gene that encodes a mitochondrial inner membrane protein that probably functions as a copper transporter. Mutations in SCO2 have been associated with severe COX deficiency and early-onset fatal infantile hypertrophic cardiomyopathy, encephalopathy, and neurogenic muscle atrophy. Fetal wastage has not been described in association with mutations of SCO2. OBJECTIVE: To investigate a case of early spontaneous abortion in a family carrying mutations in SCO2. DESIGN: Case report. Patients Spontaneous abortion in the first trimester occurred in a woman whose first pregnancy had also resulted in a miscarriage in the first trimester and whose only child had died at 53 days of life from cardioencephalomyopathy. This child was a compound heterozygote for mutations in SCO2, and her parents were heterozygous for each mutation. MAIN OUTCOME MEASURES: Mutations in the abortus by sequencing the SCO2 gene and confirmation of the point mutations as determined by restriction fragment length polymorphism analysis. RESULTS: As in the previous affected child, we found a missense mutation (E140K) and a nonsense mutation (Q53X) in the abortus. CONCLUSIONS: The typical clinical presentation of SCO2 mutations is severe, rapidly progressive hypertrophic cardiomyopathy that presents in the neonatal period and is often associated with respiratory difficulties, metabolic acidosis, and hypotonia. The experience in this family suggests that mutations in SCO2 may also be associated with early spontaneous abortions and fetal wastage.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Mutação , Proteínas/genética , Feto Abortado/enzimologia , Aborto Espontâneo/enzimologia , Proteínas de Transporte , Análise Mutacional de DNA , Evolução Fatal , Feminino , Humanos , Proteínas Mitocondriais , Chaperonas Moleculares , Processamento de Proteína Pós-Traducional/genética
18.
Arch Neurol ; 61(12): 1935-7, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15596615

RESUMO

BACKGROUND: Cytochrome-c oxidase (COX) is the terminal enzyme of the mitochondrial electron transport chain, and COX deficiency is a common cause of mitochondrial diseases. Cytochrome-c oxidase is composed of 13 subunits, of which 3 are encoded by mitochondrial DNA and 10 by nuclear DNA. Mutations have been identified in each of the 3 mitochondrial DNA genes but in none of the nuclear DNA genes. However, COX deficiency has been attributed to mutations in several nuclear DNA-encoded ancillary proteins needed for COX assembly and function. Despite this progress, the molecular basis of COX deficiency remains elusive in many patients, justifying the identification and screening of additional COX assembly genes, such as COX16, COX19, and PET191. OBJECTIVE: To determine if COX16, COX19, and PET191 are implicated in human COX deficiency. METHODS: Mutation screening was performed on 53 patients with isolated COX deficiency by direct sequencing of COX19 and by single-strand conformational polymorphism analysis for COX16 and PET191. RESULTS: No mutations were found in COX16, COX19, or PET191 in these patients. CONCLUSIONS: The COX16, COX19, and PET191 genes are either not involved or very rarely involved in human COX deficiency. Mutations in additional COX assembly genes remain to be identified.


Assuntos
Deficiência de Citocromo-c Oxidase/genética , Proteínas Mitocondriais/genética , Subunidades Proteicas/genética , Proteínas de Saccharomyces cerevisiae/genética , Criança , Deficiência de Citocromo-c Oxidase/enzimologia , Humanos , Proteínas de Membrana , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/enzimologia , Mutação , Polimorfismo Conformacional de Fita Simples , Subunidades Proteicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
Neuromuscul Disord ; 14(4): 253-60, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15019703

RESUMO

Glycogen storage disease type IV or Andersen disease is an autosomal recessive disorder due to deficiency of glycogen branching enzyme. Typically, glycogen storage disease type IV presents with rapidly progressive liver cirrhosis and death in childhood. Variants include a cardiopathic form of childhood, a relatively benign myopathic form of young adults, and a late-onset neurodegenerative disorder (adult polyglucosan body disease). A severe neuromuscular variant resembling Werdnig-Hoffmann disease has also been described in two patients. The objective was to describe two additional infants with the neuromuscular variant and novel mutations in the GBE1 gene. Branching enzyme assay, Western blot, RT-PCR and sequencing were performed in muscle biopsies from both patients. The cDNA of patient 1 was subcloned and sequenced to define the mutations. Muscle biopsies showed accumulation of periodic acid Schiff-positive, diastase-resistant storage material in both patients and increased lysosomal enzyme activity in patient 1. Branching enzyme activity in muscle was negligible in both patients, and Western blot showed decreased branching enzyme protein. Patient 1 had two single base pair deletions, one in exon 10 (1238delT) and the other in exon 12 (1467delC), and each parent was heterozygous for one of the deletions. Patient 2 had a large homozygous deletion that spanned 627 bp and included exons 8-12. Patient 1, who died at 41 days, had neurophysiological and neuropathological features of Spinal Muscular Atrophy. Patient 2, who died at 5(1/2) weeks, had a predominantly myopathic process. The infantile neuromuscular form of glycogen storage disease type IV is considered extremely rare, but our encountering two patients in close succession suggests that the disease may be underdiagnosed.


Assuntos
Doença de Depósito de Glicogênio Tipo IV , Músculo Esquelético/patologia , Doenças Neuromusculares , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Ácido Aminossalicílico/metabolismo , Biópsia/métodos , Western Blotting/métodos , Tronco Encefálico/enzimologia , Tronco Encefálico/patologia , Análise Mutacional de DNA/métodos , Éxons , Feminino , Doença de Depósito de Glicogênio Tipo IV/complicações , Doença de Depósito de Glicogênio Tipo IV/genética , Doença de Depósito de Glicogênio Tipo IV/metabolismo , Humanos , Lactente , Oxirredutases Intramoleculares , Lisossomos/enzimologia , Microscopia Eletrônica/métodos , Músculo Esquelético/enzimologia , Músculo Esquelético/metabolismo , Músculo Esquelético/ultraestrutura , Mutação , Doenças Neuromusculares/enzimologia , Doenças Neuromusculares/patologia , Prostaglandina-E Sintases , RNA Mensageiro/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Atrofias Musculares Espinais da Infância/complicações , Atrofias Musculares Espinais da Infância/patologia , Transativadores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA