Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Brain Behav Immun ; 114: 80-93, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37544463

RESUMO

Decades of research into chronic pain has deepened our understanding of the cellular mechanisms behind this process. However, a failure to consider the biological variable of sex has limited the application of these breakthroughs into clinical application. In the present study, we investigate fundamental differences in chronic pain between male and female mice resulting from inflammatory activation of the innate immune system. We provide evidence that female mice are more sensitive to the effects of macrophages. Injecting small volumes of media conditioned by either unstimulated macrophages or macrophages stimulated by the inflammatory molecule TNFα lead to increased pain sensitivity only in females. Interestingly, we find that TNFα conditioned media leads to a more rapid resolution of mechanical hypersensitivity and altered immune cell recruitment to sites of injury. Furthermore, male and female macrophages exhibit differential polarization characteristics and motility after TNFα stimulation, as well as a different profile of cytokine secretions. Finally, we find that the X-linked gene Tlr7 is critical in the facilitating the adaptive resolution of pain in models of acute and chronic inflammation in both sexes. Altogether, these findings suggest that although the cellular mechanisms of pain resolution may differ between the sexes, the study of these differences may yield more targeted approaches with clinical applications.

2.
J Neurosci Res ; 100(1): 183-190, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-32731302

RESUMO

Kappa opioid receptor (KOR) agonists produce robust analgesia with minimal abuse liability and are considered promising pharmacological agents to manage chronic pain and itch. The KOR system is also notable for robust differences between the sexes, with females exhibiting lower analgesic response than males. Sexually dimorphic traits can be due to either the influence of gonadal hormones during development or adulthood, or due to the complement of genes expressed on the X or Y chromosome. Previous studies examining sex differences in KOR antinociception have relied on surgical or pharmacological manipulation of the gonads to determine whether sex hormones influence KOR function. While there are conflicting reports whether gonadal hormones influence KOR function, no study has examined these effects in context with sex chromosomes. Here, we use two genetic mouse models, the four core genotypes and XY*, to isolate the chromosomal and hormonal contributions to sex differences in KOR analgesia. Mice were treated with systemic KOR agonist (U50,488H) and thermal analgesia measured in the tail withdrawal assay. We found that KOR antinociception was influenced predominantly by the number of the X chromosomes. These data suggest that the dose and/or parental imprint on X gene(s) contribute significantly to the sexually dimorphism in KOR analgesia.


Assuntos
Analgesia , Receptores Opioides kappa , Analgésicos Opioides/farmacologia , Animais , Feminino , Masculino , Camundongos , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/genética , Caracteres Sexuais , Cromossomo X
3.
J Neurosci Res ; 100(1): 19-34, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-32830380

RESUMO

The actions of endogenous opioids and nociceptin/orphanin FQ are mediated by four homologous G protein-coupled receptors that constitute the opioid receptor family. However, little is known about opioid systems in cyclostomes (living jawless fish) and how opioid systems might have evolved from invertebrates. Here, we leveraged de novo transcriptome and low-coverage whole-genome assembly in the Pacific hagfish (Eptatretus stoutii) to identify and characterize the first full-length coding sequence for a functional opioid receptor in a cyclostome. Additionally, we define two novel endogenous opioid precursors in this species that predict several novel opioid peptides. Bioinformatic analysis shows no closely related opioid receptor genes in invertebrates with regard either to the genomic organization or to conserved opioid receptor-specific sequences that are common in all vertebrates. Furthermore, no proteins analogous to vertebrate opioid precursors could be identified by genomic searches despite previous claims of protein or RNA-derived sequences in several invertebrate species. The presence of an expressed orthologous receptor and opioid precursors in the Pacific hagfish confirms that a functional opioid system was likely present in the common ancestor of all extant vertebrates some 550 million years ago, earlier than all previous authenticated accounts. We discuss the premise that the cyclostome and vertebrate opioid systems evolved from invertebrate systems concerned with antimicrobial defense and speculate that the high concentrations of opioid precursors in tissues such as the testes, gut, and activated immune cells are key remnants of this evolutionary role.


Assuntos
Feiticeiras (Peixe) , Analgésicos Opioides , Animais , Evolução Biológica , Evolução Molecular , Feiticeiras (Peixe)/genética , Peptídeos Opioides , Filogenia
4.
J Neurosci ; 39(21): 4162-4178, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-30862664

RESUMO

Pain is a multidimensional experience and negative affect, or how much the pain is "bothersome", significantly impacts the sufferers' quality of life. It is well established that the κ opioid system contributes to depressive and dysphoric states, but whether this system contributes to the negative affect precipitated by the occurrence of chronic pain remains tenuous. Using a model of persistent pain, we show by quantitative real-time-PCR, florescence in situ hybridization, Western blotting and GTPgS autoradiography an upregulation of expression and the function of κ opioid receptors (KORs) and its endogenous ligand dynorphin in the mesolimbic circuitry in animals with chronic pain compared with surgical controls. Using in vivo microdialysis and microinjection of drugs into the mesolimbic dopamine system, we demonstrate that inhibiting KORs reinstates evoked dopamine release and reward-related behaviors in chronic pain animals. Chronic pain enhanced KOR agonist-induced place aversion in a sex-dependent manner. Using various place preference paradigms, we show that activation of KORs drives pain aversive states in male but not female mice. However, KOR antagonist treatment was effective in alleviating anxiogenic and depressive affective-like behaviors in both sexes. Finally, ablation of KORs from dopamine neurons using AAV-TH-cre in KORloxP mice prevented pain-induced aversive states as measured by place aversion assays. Our results strongly support the use of KOR antagonists as therapeutic adjuvants to alleviate the emotional, tonic-aversive component of chronic pain, which is argued to be the most significant component of the pain experience that impacts patients' quality of life.SIGNIFICANCE STATEMENT We show that KORs are sufficient to drive the tonic-aversive component of chronic pain; the emotional component of pain that is argued to significantly impact a patient's quality of life. The impact of our study is broadly relevant to affective disorders associated with disruption of reward circuitry and thus likely contributes to many of the devastating sequelae of chronic pain, including the poor response to treatment of many patients, debilitating affective disorders (other disorders including anxiety and depression that demonstrate high comorbidity with chronic pain) and substance abuse. Indeed, coexisting psychopathology increases pain intensity, pain-related disability and effectiveness of treatments (Jamison and Edwards, 2013).


Assuntos
Dor Crônica/metabolismo , Dor Crônica/psicologia , Emoções/fisiologia , Percepção da Dor/fisiologia , Receptores Opioides kappa/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Long-Evans
5.
Mol Pharmacol ; 98(4): 433-444, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32958571

RESUMO

For decades the broad role of opioids in addiction, neuropsychiatric disorders, and pain states has been somewhat well established. However, in recent years, with the rise of technological advances, not only is the existing dogma being challenged, but we are identifying new disease areas in which opioids play a critical role. This review highlights four new areas of exploration in the opioid field. The most recent addition to the opioid family, the nociceptin receptor system, shows promise as the missing link in understanding the neurocircuitry of motivation. It is well known that activation of the kappa opioid receptor system modulates negative affect and dysphoria, but recent studies now implicate the kappa opioid system in the modulation of negative affect associated with pain. Opioids are critical in pain management; however, the often-forgotten delta opioid receptor system has been identified as a novel therapeutic target for headache disorders and migraine. Lastly, changes to the gut microbiome have been shown to directly contribute to many of the symptoms of chronic opioid use and opioid related behaviors. This review summarizes the findings from each of these areas with an emphasis on identifying new therapeutic targets. SIGNIFICANCE STATEMENT: The focus of this minireview is to highlight new disease areas or new aspects of disease in which opioids have been implicated; this includes pain, motivation, migraine, and the microbiome. In some cases, this has resulted in the pursuit of a novel therapeutic target and resultant clinical trial. We believe this is very timely and will be a refreshing take on reading about opioids and disease.


Assuntos
Analgésicos Opioides/farmacologia , Transtornos de Enxaqueca/metabolismo , Transtornos Relacionados ao Uso de Opioides/microbiologia , Dor/metabolismo , Receptores Opioides/metabolismo , Analgésicos Opioides/uso terapêutico , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Transtornos de Enxaqueca/tratamento farmacológico , Motivação , Transtornos Relacionados ao Uso de Opioides/metabolismo , Dor/tratamento farmacológico , Receptores Opioides delta/metabolismo , Receptores Opioides kappa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor de Nociceptina
6.
Dig Dis Sci ; 65(1): 158-167, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31312996

RESUMO

BACKGROUND: Mutations in the NPC1 gene result in sequestration of unesterified cholesterol (UC) and glycosphingolipids in most tissues leading to multi-organ disease, especially in the brain, liver, lungs, and spleen. Various data from NPC1-deficient mice suggest the small intestine (SI) is comparatively less affected, even in late stage disease. METHODS: Using the Npc1nih mouse model, we measured SI weights and total cholesterol (TC) levels in Npc1-/- versus Npc1+/+ mice as a function of age, and then after prolonged ezetimibe-induced inhibition of cholesterol absorption. Next, we determined intestinal levels of UC and esterified cholesterol (EC), and cholesterol synthesis rates in Npc1-/- and Npc1+/+ mice, with and without the cholesterol-esterifying enzyme SOAT2, following a once-only subcutaneous injection with 2-hydroxypropyl-ß-cyclodextrin (2HPßCD). RESULTS: By ~ 42 days of age, intestinal TC levels averaged ~ 2.1-fold more (mostly UC) in the Npc1-/- versus Npc1+/+ mice with no further increase thereafter. Chronic ezetimibe treatment lowered intestinal TC levels in the Npc1-/- mice by only ~ 16%. In Npc1-/- mice given 2HPßCD 24 h earlier, UC levels fell, EC levels increased (although less so in mice lacking SOAT2), and cholesterol synthesis was suppressed equally in the Npc1-/-:Soat2+/+ and Npc1-/-:Soat2-/- mice. CONCLUSIONS: The low and static levels of intestinal UC sequestration in Npc1-/- mice likely reflect the continual sloughing of cells from the mucosa. This sequestration is blunted by about the same extent following a single acute treatment with 2HPßCD as it is by a prolonged ezetimibe-induced block of cholesterol absorption.


Assuntos
Colesterol/metabolismo , Absorção Intestinal , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Doença de Niemann-Pick Tipo C/metabolismo , 2-Hidroxipropil-beta-Ciclodextrina/farmacologia , Animais , Modelos Animais de Doenças , Ezetimiba/farmacologia , Feminino , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Intestino Delgado/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Doença de Niemann-Pick Tipo C/genética , Esterol O-Aciltransferase/genética , Esterol O-Aciltransferase/metabolismo , Esterol O-Aciltransferase 2
7.
J Neurosci ; 37(10): 2524-2538, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28148727

RESUMO

The mechanisms that govern node of Ranvier organization, stability, and long-term maintenance remain to be fully elucidated. One of the molecular components of the node is the cytoskeletal scaffolding protein, ankyrin G (AnkG), which interacts with multiple members of the nodal complex. The role of AnkG in nodal organization and maintenance is still not clearly defined as to whether AnkG functions as an initial nodal organizer or whether it functions as a nodal stabilizer after the nodal complex has been assembled. Using a mouse model system, we report here that perinatal and juvenile neuronal ablation of AnkG has differential consequences on nodal stability. Early loss of AnkG creates immature nodes with abnormal morphology, which undergo accelerated destabilization within a month, resulting in rapid voltage-gated sodium (NaV) channel and ßIV spectrin loss with reduced effects on neurofascin 186. On the other hand, late ablation of AnkG from established nodal complexes leads to slow but progressive nodal destabilization over 10 months, primarily affecting ßIV spectrin, followed by NaV channels, with modest impact on neurofascin 186. We also show that ankyrin R and ßI spectrin are not sufficient to prevent nodal disorganization after AnkG ablation. Additionally, nodal disorganization in both early and late AnkG mutants is accompanied by axonal pathology and neurological dysfunction. Together, our results suggest that AnkG plays an indispensable role in the maturation and long-term stabilization of the newly assembled nodal complex, and that loss of AnkG after nodal stabilization does not lead to rapid nodal disassembly but to loss of specific nodal components in a time-dependent manner.SIGNIFICANCE STATEMENT Nodes of Ranvier are the myelin-free gaps along myelinated axons that allow fast communication between neurons and their target cells by propagating action potentials in a saltatory manner. The cytoskeletal scaffolding protein ankyrin G (AnkG) has been thought to play an important role in node formation; however, its precise role in nodal assembly, stability, and maintenance is still not clear. By using spatiotemporal ablation of AnkG, we report its differential role in nodal maturation and stabilization. We show that early AnkG-deficient nodes fail to mature and undergo rapid destabilization. In contrast, nodes that assemble with AnkG are much more stable and undergo gradual disintegration with sequential loss of nodal components in the absence of AnkG.


Assuntos
Anquirinas/metabolismo , Axônios/fisiologia , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/fisiologia , Condução Nervosa/fisiologia , Nós Neurofibrosos/fisiologia , Animais , Axônios/ultraestrutura , Crescimento Celular , Células Cultivadas , Citoesqueleto/ultraestrutura , Feminino , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fibras Nervosas Mielinizadas/fisiologia , Fibras Nervosas Mielinizadas/ultraestrutura , Nós Neurofibrosos/ultraestrutura
8.
J Neurochem ; 147(3): 395-408, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30025158

RESUMO

Myelinated axons segregate the axonal membrane into four defined regions: the node of Ranvier, paranode, juxtaparanode, and internode. The paranodal junction consists of specific component proteins, such as neurofascin155 (NF155) on the glial side, and Caspr and Contactin on the axonal side. Although paranodal junctions are thought to play crucial roles in rapid saltatory conduction and nodal assembly, the role of their interaction with neurons is not fully understood. In a previous study, conditional NF155 knockout in oligodendrocytes led to disorganization of the paranodal junctions. To examine if disruption of paranodal junctions affects neuronal gene expression, we prepared total RNA from the retina of NF155 conditional knockout, and performed expression analysis. We found that the expression level of 433 genes changed in response to paranodal junction ablation. Interestingly, expression of aquaporin 3 (AQP3) was significantly reduced in NF155 conditional knockout mice, but not in cerebroside sulfotransferase knockout (CST-KO) mice, whose paranodes are not originally formed during development. Copy number variations have an important role in the etiology of schizophrenia (SCZ). We observed rare duplications of AQP3 in SCZ patients, suggesting a correlation between abnormal AQP3 expression and SCZ. To determine if AQP3 over-expression in NF155 conditional knockout mice influences neuronal function, we performed adeno-associated virus (AAV)-mediated over-expression of AQP3 in the motor cortex of mice and found a significant increase in caspase 3-dependent neuronal apoptosis in AQP3-transduced cells. This study may provide new insights into therapeutic approaches for SCZ by regulating AQP3 expression, which is associated with paranodal disruption.


Assuntos
Aquaporina 3/metabolismo , Neurônios/metabolismo , Esquizofrenia/metabolismo , Animais , Axônios/metabolismo , Axônios/patologia , Caspase 3/genética , Caspase 3/metabolismo , Moléculas de Adesão Celular/biossíntese , Moléculas de Adesão Celular/genética , Sobrevivência Celular , Variações do Número de Cópias de DNA , Dependovirus/genética , Feminino , Duplicação Gênica , Expressão Gênica , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Córtex Motor/metabolismo , Fatores de Crescimento Neural/biossíntese , Fatores de Crescimento Neural/genética , Neurônios/patologia , Esquizofrenia/patologia
9.
J Neurosci Res ; 95(7): 1373-1390, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28370195

RESUMO

Bidirectional interactions between neurons and myelinating glial cells result in formation of axonal domains along myelinated fibers. Loss of axonal domains leads to detrimental consequences on nerve structure and function, resulting in reduced conductive properties and the diminished ability to reliably transmit signals to the targets they innervate. Thus, impairment of peripheral myelinated axons that project to the surface of muscle fibers and form neuromuscular junction (NMJ) synapses leads to muscle dysfunction. The goal of our studies was to determine how altered electrophysiological properties due to axonal domain disorganization lead to muscle pathology, which is relevant to a variety of peripheral neuropathies, demyelinating diseases, and neurodegenerative disorders. Using conventional Contactin-Associated Protein 1 (Caspr1) and Caspr2 single or double mutants with disrupted paranodal, juxtaparanodal, or both regions, respectively, in peripheral myelinated axons, we correlated defects in NMJ integrity and muscle pathology. Our data show that loss of axonal domains in Caspr1 and Caspr2 single and double mutants primarily alters distal myelinated fibers together with presynaptic terminals, eventually leading to NMJ denervation and reduction in postsynaptic endplate areas. Moreover, reduction in conductive properties of peripheral myelinated fibers together with NMJ disintegration leads to muscle atrophy in Caspr1 mutants or muscle fiber degeneration accompanied by mitochondrial dysfunction in Caspr1/Caspr2 double mutants. Together, our data indicate that proper organization of axonal domains in myelinated fibers is critical for optimal propagation of electrical signals, NMJ integrity, and muscle health, and provide insights into a wide range of pathologies that result in reduced nerve conduction leading to muscle atrophy. © 2017 Wiley Periodicals, Inc.


Assuntos
Axônios/patologia , Moléculas de Adesão Celular Neuronais/genética , Proteínas de Membrana/genética , Atrofia Muscular/genética , Atrofia Muscular/patologia , Proteínas do Tecido Nervoso/genética , Junção Neuromuscular/patologia , Animais , Axônios/ultraestrutura , Feminino , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/genética , Fibras Nervosas Mielinizadas/patologia , Fibras Nervosas Mielinizadas/ultraestrutura , Condução Nervosa/fisiologia , Junção Neuromuscular/ultraestrutura
10.
J Neurosci Res ; 95(6): 1330-1335, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27574286

RESUMO

Microglial activation in the spinal cord plays a central role in the development and maintenance of chronic pain after a peripheral nerve injury (PNI). There has not yet been a thorough assessment of microglial activation in brain regions associated with pain and reward. To this end, this study uses a mouse model of neuropathic pain in which the left sciatic nerve of male C57Bl/6J mice is loosely constricted (chronic constriction injury) to assess microglial activation in several brain regions 2 weeks after injury, a time point at which pain hypersensitivity is well established. We found significant microglial activation in brain regions associated with sensory pain transmission and affect, including the thalamus, sensory cortex, and amygdala. Activation was consistently most robust in brain regions contralateral to the side of injury. Brain regions not directly involved in either sensory or affective dimensions of pain, such as the motor cortex, did not display microglial activation. This study confirms that PNI induces microglial activation in regions involved with both sensory and affective components of pain. © 2016 Wiley Periodicals, Inc.


Assuntos
Encéfalo/patologia , Dor Crônica/patologia , Microglia/patologia , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Dor Crônica/etiologia , Modelos Animais de Doenças , Lateralidade Funcional , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Traumatismos dos Nervos Periféricos/complicações , RNA Mensageiro/metabolismo
11.
J Neurosci ; 35(22): 8442-50, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-26041913

RESUMO

Chronic pain attenuates midbrain dopamine (DA) transmission, as evidenced by a decrease in opioid-evoked DA release in the ventral striatum, suggesting that the occurrence of chronic pain impairs reward-related behaviors. However, mechanisms by which pain modifies DA transmission remain elusive. Using in vivo microdialysis and microinjection of drugs into the mesolimbic DA system, we demonstrate in mice and rats that microglial activation in the VTA compromises not only opioid-evoked release of DA, but also other DA-stimulating drugs, such as cocaine. Our data show that loss of stimulated extracellular DA is due to impaired chloride homeostasis in midbrain GABAergic interneurons. Treatment with minocycline or interfering with BDNF signaling restored chloride transport within these neurons and recovered DA-dependent reward behavior. Our findings demonstrate that a peripheral nerve injury causes activated microglia within reward circuitry that result in disruption of dopaminergic signaling and reward behavior. These results have broad implications that are not restricted to the problem of pain, but are also relevant to affective disorders associated with disruption of reward circuitry. Because chronic pain causes glial activation in areas of the CNS important for mood and affect, our findings may translate to other disorders, including anxiety and depression, that demonstrate high comorbidity with chronic pain.


Assuntos
Dor Crônica/patologia , Sistema Límbico/patologia , Microglia/patologia , Rede Nervosa/patologia , Recompensa , Animais , Área Sob a Curva , Dor Crônica/tratamento farmacológico , Dor Crônica/etiologia , Cocaína/uso terapêutico , Condicionamento Clássico/efeitos dos fármacos , Modelos Animais de Doenças , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Minociclina/uso terapêutico , Morfina/uso terapêutico , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Limiar da Dor/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Neuropatia Ciática/complicações , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/fisiologia
12.
Am J Physiol Gastrointest Liver Physiol ; 307(8): G836-47, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25147230

RESUMO

Cholesteryl ester storage disease (CESD) results from loss-of-function mutations in LIPA, the gene that encodes lysosomal acid lipase (LAL). Hepatomegaly and deposition of esterified cholesterol (EC) in multiple organs ensue. The present studies quantitated rates of synthesis, absorption, and disposition of cholesterol, and whole body cholesterol pool size in a mouse model of CESD. In 50-day-old lal(-/-) and matching lal(+/+) mice fed a low-cholesterol diet, whole animal cholesterol content equalled 210 and 50 mg, respectively, indicating that since birth the lal(-/-) mice sequestered cholesterol at an average rate of 3.2 mg·day(-1)·animal(-1). The proportion of the body sterol pool contained in the liver of the lal(-/-) mice was 64 vs. 6.3% in their lal(+/+) controls. EC concentrations in the liver, spleen, small intestine, and lungs of the lal(-/-) mice were elevated 100-, 35-, 15-, and 6-fold, respectively. In the lal(-/-) mice, whole liver cholesterol synthesis increased 10.2-fold, resulting in a 3.2-fold greater rate of whole animal sterol synthesis compared with their lal(+/+) controls. The rate of cholesterol synthesis in the lal(-/-) mice exceeded that in the lal(+/+) controls by 3.7 mg·day(-1)·animal(-1). Fractional cholesterol absorption and fecal bile acid excretion were unchanged in the lal(-/-) mice, but their rate of neutral sterol excretion was 59% higher than in their lal(+/+) controls. Thus, in this model, the continual expansion of the body sterol pool is driven by the synthesis of excess cholesterol, primarily in the liver. Despite the severity of their disease, the median life span of the lal(-/-) mice was 355 days.


Assuntos
Doença do Armazenamento de Colesterol Éster/metabolismo , Ésteres do Colesterol/metabolismo , Fígado/metabolismo , Esterol Esterase/metabolismo , Animais , Doença do Armazenamento de Colesterol Éster/genética , Feminino , Absorção Intestinal , Mucosa Intestinal/metabolismo , Pulmão/metabolismo , Masculino , Camundongos , Baço/metabolismo , Esterol Esterase/deficiência , Esterol Esterase/genética
13.
Curr Biol ; 34(9): 1987-1995.e4, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38614081

RESUMO

The anterior cingulate cortex (ACC) is critical for the perception and unpleasantness of pain.1,2,3,4,5,6 It receives nociceptive information from regions such as the thalamus and amygdala and projects to several cortical and subcortical regions of the pain neuromatrix.7,8 ACC hyperexcitability is one of many functional changes associated with chronic pain, and experimental activation of ACC pyramidal cells produces hypersensitivity to innocuous stimuli (i.e., allodynia).9,10,11,12,13,14 A less-well-studied projection to the ACC arises from a small forebrain region, the claustrum.15,16,17,18,19,20 Stimulation of excitatory claustrum projection neurons preferentially activates GABAergic interneurons, generating feed-forward inhibition onto excitatory cortical networks.21,22,23,24 Previous work has shown that claustrocingulate projections display altered activity in prolonged pain25,26,27; however, it remains unclear whether and how the claustrum participates in nociceptive processing and high-order pain behaviors. Inhibition of ACC activity reverses mechanical allodynia in animal models of persistent and neuropathic pain,1,9,28 suggesting claustrum inputs may function to attenuate pain processing. In this study, we sought to define claustrum function in acute and chronic pain. We found enhanced claustrum activity after a painful stimulus that was attenuated in chronic inflammatory pain. Selective inhibition of claustrocingulate projection neurons enhanced acute nociception but blocked pain learning. Inversely, chemogenetic activation of claustrocingulate neurons had no effect on basal nociception but rescued inflammation-induced mechanical allodynia. Together, these results suggest that claustrocingulate neurons are a critical component of the pain neuromatrix, and dysregulation of this connection may contribute to chronic pain.


Assuntos
Claustrum , Giro do Cíngulo , Animais , Giro do Cíngulo/fisiologia , Giro do Cíngulo/fisiopatologia , Claustrum/fisiologia , Camundongos , Masculino , Nociceptividade/fisiologia , Vias Neurais/fisiopatologia , Vias Neurais/fisiologia , Camundongos Endogâmicos C57BL , Dor/fisiopatologia
14.
Drug Metab Dispos ; 41(1): 40-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23011759

RESUMO

Carboxylesterases (CES) are a well recognized, yet incompletely characterized family of proteins that catalyze neutral lipid hydrolysis. Some CES have well-defined roles in xenobiotic clearance, pharmacologic prodrug activation, and narcotic detoxification. In addition, emerging evidence suggests other CES may have roles in lipid metabolism. Humans have six CES genes, whereas mice have 20 Ces genes grouped into five isoenzyme classes. Perhaps due to the high sequence similarity shared by the mouse Ces genes, the tissue-specific distribution of expression for these enzymes has not been fully addressed. Therefore, we performed studies to provide a comprehensive tissue distribution analysis of mouse Ces mRNAs. These data demonstrated that while the mouse Ces family 1 is highly expressed in liver and family 2 in intestine, many Ces genes have a wide and unique tissue distribution defined by relative mRNA levels. Furthermore, evaluating Ces gene expression in response to pharmacologic activation of lipid- and xenobiotic-sensing nuclear hormone receptors showed differential regulation. Finally, specific shifts in Ces gene expression were seen in peritoneal macrophages following lipopolysaccharide treatment and in a steatotic liver model induced by high-fat feeding, two model systems relevant to disease. Overall these data show that each mouse Ces gene has its own distinctive tissue expression pattern and suggest that some CES may have tissue-specific roles in lipid metabolism and xenobiotic clearance.


Assuntos
Carboxilesterase/metabolismo , Receptores Citoplasmáticos e Nucleares/fisiologia , Animais , Carboxilesterase/genética , Regulação Enzimológica da Expressão Gênica , Camundongos , Reação em Cadeia da Polimerase em Tempo Real
15.
Biol Lett ; 9(4): 20130270, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-23720522

RESUMO

Formants are important phonetic elements of human speech that are also used by humans and non-human mammals to assess the body size of potential mates and rivals. As a consequence, it has been suggested that formant perception, which is crucial for speech perception, may have evolved through sexual selection. Somewhat surprisingly, though, no previous studies have examined whether sexes differ in their ability to use formants for size evaluation. Here, we investigated whether men and women differ in their ability to use the formant frequency spacing of synthetic vocal stimuli to make auditory size judgements over a wide range of fundamental frequencies (the main determinant of vocal pitch). Our results reveal that men are significantly better than women at comparing the apparent size of stimuli, and that lower pitch improves the ability of both men and women to perform these acoustic size judgements. These findings constitute the first demonstration of a sex difference in formant perception, and lend support to the idea that acoustic size normalization, a crucial prerequisite for speech perception, may have been sexually selected through male competition. We also provide the first evidence that vocalizations with relatively low pitch improve the perception of size-related formant information.


Assuntos
Seleção Genética , Percepção da Fala , Acústica , Adolescente , Tamanho Corporal , Inglaterra , Feminino , Humanos , Masculino , Caracteres Sexuais , Adulto Jovem
16.
Neuropharmacology ; 233: 109546, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37068603

RESUMO

Opioid addiction is characterized by adaptations in the mesolimbic dopamine system that occur during chronic opioid use. Alterations in dopaminergic transmission contribute to pathological drug-seeking behavior and other symptoms associated with opioid withdrawal following drug discontinuation, making drug abstinence challenging and contributing to high rates of relapse among those suffering from substance use disorder. Recently, the use of dopamine partial agonists has been proposed as a potential strategy to restore dopaminergic signalling during drug withdrawal, while avoiding the adverse side effects associated with stronger modulators of dopaminergic transmission. We investigated the effects of the atypical antipsychotic brexpiprazole, which is a partial agonist at dopamine D2 and D3 receptors, in a mouse model of opioid dependence. The development of opioid dependence in mice is characterized by locomotor sensitization, analgesic tolerance, opioid-induced hyperalgesia, and drug-seeking behavior. We set up four paradigms to model the effects of brexpiprazole on each of these adaptations that occur during chronic opioid use in male and female C57BL/6J mice. Concomitant treatment of brexpiprazole during chronic morphine administration attenuated the development of locomotor sensitization. Brexpiprazole treatment abolished morphine place preference and blocked reinstatement of this behavior following extinction. Brexpiprazole treatment did not alter morphine analgesia, nor did it impact the development of morphine tolerance. However, brexpiprazole treatment did prevent the expression of opioid-induced hyperalgesia in a tail-withdrawal assay, while failing to improve somatic withdrawal symptoms. Altogether, these results provide preclinical evidence for the efficacy of brexpiprazole as a modulator of dopamine-dependent behaviors during opioid use and withdrawal.


Assuntos
Antipsicóticos , Transtornos Relacionados ao Uso de Opioides , Síndrome de Abstinência a Substâncias , Camundongos , Masculino , Feminino , Animais , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Dopamina , Analgésicos Opioides/farmacologia , Hiperalgesia , Camundongos Endogâmicos C57BL , Morfina , Agonistas de Dopamina/farmacologia , Síndrome de Abstinência a Substâncias/tratamento farmacológico
17.
J Lipid Res ; 53(11): 2331-42, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22892156

RESUMO

An injection of 2-hydroxypropyl-ß-cyclodextrin (HP-ß-CD) to mice lacking Niemann Pick type C (NPC) protein results in delayed neurodegeneration, decreased inflammation, and prolonged lifespan. Changes in sterol balance observed in Npc1(-/-) mice 24 h after HP-ß-CD administration suggest that HP-ß-CD facilitates the release of accumulated lysosomal cholesterol, the molecular hallmark of this genetic disorder. Current studies were performed to evaluate the time course of HP-ß-CD effects. Within 3 h after HP-ß-CD injection, decreases in cholesterol synthesis rates and increases in cholesteryl ester levels were detected in tissues of Npc1(-/-) mice. The levels of RNAs for target genes of sterol-sensing transcription factors were altered by 6 h in liver, spleen, and ileum. Despite the cholesterol-binding capacity of HP-ß-CD, there was no evidence of increased cholesterol in plasma or urine of treated Npc1(-/-) mice, suggesting that HP-ß-CD does not carry sterol from the lysosome into the bloodstream for ultimate urinary excretion. Similar changes in sterol balance were observed in cultured cells from Npc1(-/-) mice using HP-ß-CD and sulfobutylether-ß-CD, a variant that can interact with sterol but not facilitate its solubilization. Taken together, our results demonstrate that HP-ß-CD works in cells of Npc1(-/-) mice by rapidly liberating lysosomal cholesterol for normal sterol processing within the cytosolic compartment.


Assuntos
Colesterol/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Proteínas/metabolismo , beta-Ciclodextrinas/farmacologia , 2-Hidroxipropil-beta-Ciclodextrina , Animais , Células Cultivadas , Colesterol/urina , Citocinas/sangue , Peptídeos e Proteínas de Sinalização Intracelular , Lipoproteínas/sangue , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C/sangue , Doença de Niemann-Pick Tipo C/metabolismo , Doença de Niemann-Pick Tipo C/urina , Proteínas/genética
18.
Pain ; 163(1): e49-e61, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33863858

RESUMO

ABSTRACT: Chronic pain is a highly prevalent symptom associated with the autoimmune disorder multiple sclerosis (MS). The central nucleus of the amygdala plays a critical role in pain processing and modulation. Neuropathic pain alters nociceptive signaling in the central amygdala, contributing to pain chronicity and opioid tolerance. Here, we demonstrate that activated microglia within the central amygdala disrupt nociceptive sensory processing and contribute to pain hypersensitivity in experimental autoimmune encephalomyelitis (EAE), the most frequently used animal model of MS. Male and female mice with EAE exhibited differences in microglial morphology in the central amygdala, which was associated with heat hyperalgesia, impaired morphine reward, and reduced morphine antinociception in females. Animals with EAE displayed a lack of morphine-evoked activity in cells expressing somatostatin within the central amygdala, which drive antinociception. Induction of focal microglial activation in naïve mice via injection of lipopolysaccharide into the central amygdala produced a loss of morphine analgesia in females, similar to as observed in EAE animals. Our data indicate that activated microglia within the central amygdala may contribute to the sexually dimorphic effects of morphine and may drive neuronal adaptations that lead to pain hypersensitivity in EAE. Our results provide a possible mechanism underlying the decreased efficacy of opioid analgesics in the management of MS-related pain, identifying microglial activation as a potential therapeutic target for pain symptoms in this patient population.


Assuntos
Analgesia , Núcleo Central da Amígdala , Encefalomielite Autoimune Experimental , Neuralgia , Analgésicos Opioides/uso terapêutico , Animais , Tolerância a Medicamentos , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/complicações , Encefalomielite Autoimune Experimental/tratamento farmacológico , Feminino , Humanos , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Inflamação , Masculino , Camundongos , Morfina/uso terapêutico , Neuralgia/tratamento farmacológico , Neuralgia/etiologia
19.
J Lipid Res ; 52(4): 688-98, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21289032

RESUMO

Lipoprotein cholesterol taken up by cells is processed in the endosomal/lysosomal (E/L) compartment by the sequential action of lysosomal acid lipase (LAL), Niemann-Pick C2 (NPC2), and Niemann-Pick C1 (NPC1). Inactivation of NPC2 in mouse caused sequestration of unesterified cholesterol (UC) and expanded the whole animal sterol pool from 2,305 to 4,337 mg/kg. However, this pool increased to 5,408 and 9,480 mg/kg, respectively, when NPC1 or LAL function was absent. The transport defect in mutants lacking NPC2 or NPC1, but not in those lacking LAL, was reversed by cyclodextrin (CD), and the ED50 values for this reversal varied from ~40 mg/kg in kidney to >20,000 mg/kg in brain in both groups. This reversal occurred only with a CD that could interact with UC. Further, a CD that could interact with, but not solubilize, UC still overcame the transport defect. These studies showed that processing and export of sterol from the late E/L compartment was quantitatively different in mice lacking LAL, NPC2, or NPC1 function. In both npc2(-/-) and npc1(-/-) mice, the transport defect was reversed by a CD that interacted with UC, likely at the membrane/bulk-water interface, allowing sterol to move rapidly to the export site of the E/L compartment.


Assuntos
Colesterol/metabolismo , Lisossomos/metabolismo , Proteínas/metabolismo , Esterol Esterase/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/genética , Ciclodextrinas/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular , Metabolismo dos Lipídeos/efeitos dos fármacos , Testes de Função Hepática , Lisossomos/efeitos dos fármacos , Lisossomos/enzimologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Mutantes , Proteína C1 de Niemann-Pick , Reação em Cadeia da Polimerase , Proteínas/genética , Esterol Esterase/genética , Proteínas de Transporte Vesicular/genética
20.
Front Neurosci ; 15: 741503, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34602975

RESUMO

Multiple sclerosis (MS) is an autoimmune disease characterized by chronic inflammation, neuronal degeneration and demyelinating lesions within the central nervous system. The mechanisms that underlie the pathogenesis and progression of MS are not fully known and current therapies have limited efficacy. Preclinical investigations using the murine experimental autoimmune encephalomyelitis (EAE) model of MS, as well as clinical observations in patients with MS, provide converging lines of evidence implicating the endogenous opioid system in the pathogenesis of this disease. In recent years, it has become increasingly clear that endogenous opioid peptides, binding µ- (MOR), κ- (KOR) and δ-opioid receptors (DOR), function as immunomodulatory molecules within both the immune and nervous systems. The endogenous opioid system is also well known to play a role in the development of chronic pain and negative affect, both of which are common comorbidities in MS. As such, dysregulation of the opioid system may be a mechanism that contributes to the pathogenesis of MS and associated symptoms. Here, we review the evidence for a connection between the endogenous opioid system and MS. We further explore the mechanisms by which opioidergic signaling might contribute to the pathophysiology and symptomatology of MS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA