Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Cell Sci ; 137(12)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38786982

RESUMO

Inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) are high-conductance channels that allow the regulated redistribution of Ca2+ from the endoplasmic reticulum (ER) to the cytosol and, at specialized membrane contact sites (MCSs), to other organelles. Only a subset of IP3Rs release Ca2+ to the cytosol in response to IP3. These 'licensed' IP3Rs are associated with Kras-induced actin-interacting protein (KRAP, also known as ITPRID2) beneath the plasma membrane. It is unclear whether KRAP regulates IP3Rs at MCSs. We show, using simultaneous measurements of Ca2+ concentration in the cytosol and mitochondrial matrix, that KRAP also licenses IP3Rs to release Ca2+ to mitochondria. Loss of KRAP abolishes cytosolic and mitochondrial Ca2+ signals evoked by stimulation of IP3Rs via endogenous receptors. KRAP is located at ER-mitochondrial membrane contact sites (ERMCSs) populated by IP3R clusters. Using a proximity ligation assay between IP3R and voltage-dependent anion channel 1 (VDAC1), we show that loss of KRAP reduces the number of ERMCSs. We conclude that KRAP regulates Ca2+ transfer from IP3Rs to mitochondria by both licensing IP3R activity and stabilizing ERMCSs.


Assuntos
Cálcio , Retículo Endoplasmático , Receptores de Inositol 1,4,5-Trifosfato , Mitocôndrias , Animais , Humanos , Cálcio/metabolismo , Sinalização do Cálcio , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Células HeLa , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Lectinas Tipo C , Proteínas de Membrana , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Canal de Ânion 1 Dependente de Voltagem/genética
2.
RNA ; 29(5): 691-704, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36792358

RESUMO

Although not canonically polyadenylated, the long noncoding RNA MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) is stabilized by a highly conserved 76-nt triple helix structure on its 3' end. The entire MALAT1 transcript is over 8000 nt long in humans. The strongest structural conservation signal in MALAT1 (as measured by covariation of base pairs) is in the triple helix structure. Primary sequence analysis of covariation alone does not reveal the degree of structural conservation of the entire full-length transcript, however. Furthermore, RNA structure is often context dependent; RNA binding proteins that are differentially expressed in different cell types may alter structure. We investigate here the in-cell and cell-free structures of the full-length human and green monkey (Chlorocebus sabaeus) MALAT1 transcripts in multiple tissue-derived cell lines using SHAPE chemical probing. Our data reveal levels of uniform structural conservation in different cell lines, in cells and cell-free, and even between species, despite significant differences in primary sequence. The uniformity of the structural conservation across the entire transcript suggests that, despite seeing covariation signals only in the triple helix junction of the lncRNA, the rest of the transcript's structure is remarkably conserved, at least in primates and across multiple cell types and conditions.


Assuntos
RNA Longo não Codificante , Animais , Humanos , Chlorocebus aethiops , RNA Longo não Codificante/metabolismo , Pareamento de Bases , Linhagem Celular , Estabilidade de RNA , Proliferação de Células , Linhagem Celular Tumoral
3.
J Biol Chem ; 299(2): 102871, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36621623

RESUMO

Ca2+ puffs are brief, localized Ca2+ signals evoked by physiological stimuli that arise from the coordinated opening of a few clustered inositol 1,4,5-trisphosphate receptors (IP3Rs). However, the mechanisms that control the amplitude and termination of Ca2+ puffs are unresolved. To address these issues, we expressed SNAP-tagged IP3R3 in HEK cells without endogenous IP3Rs and used total internal reflection fluorescence microscopy to visualize the subcellular distribution of IP3Rs and the Ca2+ puffs that they evoke. We first confirmed that SNAP-IP3R3 were reliably identified and that they evoked normal Ca2+ puffs after photolysis of a caged analog of IP3. We show that increased IP3R expression caused cells to assemble more IP3R clusters, each of which contained more IP3Rs, but the mean amplitude of Ca2+ puffs (indicative of the number of open IP3Rs) was unaltered. We thus suggest that functional interactions between IP3Rs constrain the number of active IP3Rs within a cluster. Furthermore, Ca2+ puffs evoked by IP3R with reduced affinity for IP3 had undiminished amplitude, but the puffs decayed more quickly. The selective effect of reducing IP3 affinity on the decay times of Ca2+ puffs was not mimicked by exposing normal IP3R to a lower concentration of IP3. We conclude that distinct mechanisms constrain recruitment of IP3Rs during the rising phase of a Ca2+ puff and closure of IP3Rs during the falling phase, and that only the latter is affected by the rate of IP3 dissociation.


Assuntos
Sinalização do Cálcio , Cálcio , Receptores de Inositol 1,4,5-Trifosfato , Inositol 1,4,5-Trifosfato , Cálcio/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Humanos , Microscopia de Fluorescência , Células HEK293
4.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33649206

RESUMO

Increases in cytosolic Ca2+ concentration regulate diverse cellular activities and are usually evoked by opening of Ca2+ channels in intracellular Ca2+ stores and the plasma membrane (PM). For the many signals that evoke formation of inositol 1,4,5-trisphosphate (IP3), IP3 receptors coordinate the contributions of these two Ca2+ sources by mediating Ca2+ release from the endoplasmic reticulum (ER). Loss of Ca2+ from the ER then activates store-operated Ca2+ entry (SOCE) by causing dimers of STIM1 to cluster and unfurl cytosolic domains that interact with the PM Ca2+ channel, Orai1, causing its pore to open. The relative concentrations of STIM1 and Orai1 are important, but most analyses of their interactions use overexpressed proteins that perturb the stoichiometry. We tagged endogenous STIM1 with EGFP using CRISPR/Cas9. SOCE evoked by loss of ER Ca2+ was unaffected by the tag. Step-photobleaching analysis of cells with empty Ca2+ stores revealed an average of 14.5 STIM1 molecules within each sub-PM punctum. The fluorescence intensity distributions of immunostained Orai1 puncta were minimally affected by store depletion, and similar for Orai1 colocalized with STIM1 puncta or remote from them. We conclude that each native SOCE complex is likely to include only a few STIM1 dimers associated with a single Orai1 channel. Our results, demonstrating that STIM1 does not assemble clusters of interacting Orai channels, suggest mechanisms for digital regulation of SOCE by local depletion of the ER.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/metabolismo , Multimerização Proteica , Molécula 1 de Interação Estromal/metabolismo , Retículo Endoplasmático/genética , Células HeLa , Humanos , Proteínas de Neoplasias/genética , Proteína ORAI1/genética , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/metabolismo , Molécula 1 de Interação Estromal/genética
5.
Mol Syst Biol ; 18(9): e11087, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36161508

RESUMO

The cellular decision governing the transition between proliferative and arrested states is crucial to the development and function of every tissue. While the molecular mechanisms that regulate the proliferative cell cycle are well established, we know comparatively little about what happens to cells as they diverge into cell cycle arrest. We performed hyperplexed imaging of 47 cell cycle effectors to obtain a map of the molecular architecture that governs cell cycle exit and progression into reversible ("quiescent") and irreversible ("senescent") arrest states. Using this map, we found multiple points of divergence from the proliferative cell cycle; identified stress-specific states of arrest; and resolved the molecular mechanisms governing these fate decisions, which we validated by single-cell, time-lapse imaging. Notably, we found that cells can exit into senescence from either G1 or G2; however, both subpopulations converge onto a single senescent state with a G1-like molecular signature. Cells can escape from this "irreversible" arrest state through the upregulation of G1 cyclins. This map provides a more comprehensive understanding of the overall organization of cell proliferation and arrest.


Assuntos
Ciclinas , Ciclo Celular , Pontos de Checagem do Ciclo Celular , Divisão Celular , Proliferação de Células , Ciclinas/genética , Ciclinas/metabolismo
6.
Proc Natl Acad Sci U S A ; 116(21): 10392-10401, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31064875

RESUMO

Store-operated Ca2+ entry (SOCE), mediated by the endoplasmic reticulum (ER) Ca2+ sensor stromal interaction molecule 1 (STIM1) and the plasma membrane (PM) channel Orai1, is inhibited during mitosis. STIM1 phosphorylation has been suggested to mediate this inhibition, but it is unclear whether additional pathways are involved. Here, we demonstrate using various approaches, including a nonphosphorylatable STIM1 knock-in mouse, that STIM1 phosphorylation is not required for SOCE inhibition in mitosis. Rather, multiple pathways converge to inhibit Ca2+ influx in mitosis. STIM1 interacts with the cochaperone BAG3 and localizes to autophagosomes in mitosis, and STIM1 protein levels are reduced. The density of ER-PM contact sites (CSs) is also dramatically reduced in mitosis, thus physically preventing STIM1 and Orai1 from interacting to activate SOCE. Our findings provide insights into ER-PM CS remodeling during mitosis and a mechanistic explanation of the inhibition of Ca2+ influx that is required for cell cycle progression.


Assuntos
Cálcio/metabolismo , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Mitose/fisiologia , Proteínas de Neoplasias/metabolismo , Fosforilação/fisiologia , Molécula 1 de Interação Estromal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Ciclo Celular/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Células HEK293 , Células HeLa , Humanos , Camundongos , Proteína ORAI1/metabolismo
7.
J Cell Sci ; 132(3)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30617110

RESUMO

The dipeptide glycyl-l-phenylalanine 2-naphthylamide (GPN) is widely used to perturb lysosomes because its cleavage by the lysosomal enzyme cathepsin C is proposed to rupture lysosomal membranes. We show that GPN evokes a sustained increase in lysosomal pH (pHly), and transient increases in cytosolic pH (pHcyt) and Ca2+ concentration ([Ca2+]c). None of these effects require cathepsin C, nor are they accompanied by rupture of lysosomes, but they are mimicked by structurally unrelated weak bases. GPN-evoked increases in [Ca2+]c require Ca2+ within the endoplasmic reticulum (ER), but they are not mediated by ER Ca2+ channels amplifying Ca2+ release from lysosomes. GPN increases [Ca2+]c by increasing pHcyt, which then directly stimulates Ca2+ release from the ER. We conclude that physiologically relevant increases in pHcyt stimulate Ca2+ release from the ER in a manner that is independent of IP3 and ryanodine receptors, and that GPN does not selectively target lysosomes.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Citosol/efeitos dos fármacos , Dipeptídeos/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Transporte Biológico , Sistemas CRISPR-Cas , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Catepsina C/genética , Catepsina C/metabolismo , Linhagem Celular Tumoral , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Edição de Genes , Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Células HeLa , Humanos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Leucócitos/citologia , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Proteínas de Membrana Lisossomal/genética , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Ploidias , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
8.
Sensors (Basel) ; 21(11)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34072278

RESUMO

This paper presents the design, development and evaluation of a unique non-contact instrumentation system that can accurately measure the interface displacement between two rigid components in six degrees of freedom. The system was developed to allow measurement of the relative displacements between interfaces within a stacked column of brick-like components, with an accuracy of 0.05 mm and 0.1 degrees. The columns comprised up to 14 components, with each component being a scale model of a graphite brick within an Advanced Gas-cooled Reactor core. A set of 585 of these columns makes up the Multi Layer Array, which was designed to investigate the response of the reactor core to seismic inputs, with excitation levels up to 1 g from 0 to 100 Hz. The nature of the application required a compact and robust design capable of accurately recording fully coupled motion in all six degrees of freedom during dynamic testing. The novel design implemented 12 Hall effect sensors with a calibration procedure based on system identification techniques. The measurement uncertainty was ±0.050 mm for displacement and ±0.052 degrees for rotation, and the system can tolerate loss of data from two sensors with the uncertainly increasing to only 0.061 mm in translation and 0.088 degrees in rotation. The system has been deployed in a research programme that has enabled EDF to present seismic safety cases to the Office for Nuclear Regulation, resulting in life extension approvals for several reactors. The measurement system developed could be readily applied to other situations where the imposed level of stress at the interface causes negligible material strain, and accurate non-contact six-degree-of-freedom interface measurement is required.

9.
Int J Mol Sci ; 22(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34638832

RESUMO

The P2X4 purinergic receptor is targeted to endolysosomes, where it mediates an inward current dependent on luminal ATP and pH. Activation of P2X4 receptors was previously shown to trigger lysosome fusion, but the regulation of P2X4 receptors and their role in lysosomal Ca2+ signaling are poorly understood. We show that lysosomal P2X4 receptors are activated downstream of plasma membrane P2X7 and H1 histamine receptor stimulation. When P2X4 receptors are expressed, the increase in near-lysosome cytosolic [Ca2+] is exaggerated, as detected with a low-affinity targeted Ca2+ sensor. P2X4-dependent changes in lysosome properties were triggered downstream of P2X7 receptor activation, including an enlargement of lysosomes indicative of homotypic fusion and a redistribution of lysosomes towards the periphery of the cell. Lysosomal P2X4 receptors, therefore, have a role in regulating lysosomal Ca2+ release and the regulation of lysosomal membrane trafficking.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Lisossomos/metabolismo , Receptores Histamínicos H1/metabolismo , Receptores Purinérgicos P2X4/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Animais , Células HeLa , Humanos , Membranas Intracelulares/metabolismo , Lisossomos/genética , Ratos , Receptores Histamínicos H1/genética , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X7/genética
10.
Vet Surg ; 50 Suppl 1: O99-O107, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33417739

RESUMO

OBJECTIVE: To compare short- and long-term outcomes of dogs with adrenal tumors treated by adrenalectomy with laparoscopy or laparotomy. STUDY DESIGN: Retrospective study of dogs that underwent adrenalectomy with laparoscopy or laparotomy. SAMPLE POPULATION: Fourteen dogs treated with laparoscopic adrenalectomy (LA) and twenty-six dogs treated with open midline adrenalectomy (OA). METHODS: Dogs treated with LA were matched with 1 or 2 dogs treated with OA on the basis of histological nature, size, and side of the tumor. Intraoperative complications, postoperative complications, and long-term survival were compared between LA and OA. RESULTS: Intraoperative hypotension occurred in 2 of 14 (14.3%) dogs in the LA group and in 16 of 26 (61.5%) dogs in the OA group (P = .007). The surgical time was 69.8 ± 21.8 minutes for the LA group and 108.6 ± 42 minutes for the OA group (P = .0003). The hospitalization time was 39.3 ± 14.9 hours for the LA group and 46.3 ± 25.1 hours for the OA group (P = .1453). The 1- and 2-year survival rates were 77% and 77%, respectively, for the LA group and 77% and 66%, respectively, for the OA group (P = .6144). CONCLUSION: Laparoscopic adrenalectomy was associated with a shorter surgical time and a reduced incidence of hypotension compared with open adrenalectomy in this case-matched study. Short- and long-term outcomes were not affected by the surgical technique used to complete the adrenalectomy. CLINICAL SIGNIFICANCE: Laparoscopy can be recommended for adrenalectomy in dogs; however, appropriate case selection is required.


Assuntos
Neoplasias das Glândulas Suprarrenais , Adrenalectomia , Doenças do Cão , Laparoscopia , Neoplasias das Glândulas Suprarrenais/cirurgia , Neoplasias das Glândulas Suprarrenais/veterinária , Adrenalectomia/métodos , Adrenalectomia/veterinária , Animais , Doenças do Cão/cirurgia , Cães , Complicações Intraoperatórias/veterinária , Laparoscopia/veterinária , Estudos Retrospectivos
11.
Can Vet J ; 62(12): 1315-1322, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34857968

RESUMO

The perineal urethrostomy (PU) technique has only been vaguely described in the dog. Additionally, details of short- and long-term postoperative complications are not well documented. The purpose of this study was to provide a detailed description of PU in male dogs and describe the post-operative course. Eight adult, intact, male, mixed-breed dogs were used for this study. A perineal urethrostomy was performed on each, using the described technique. Dogs were assessed daily for 70 to 419 d after surgery, and stoma site patency was assessed at planned intervals using a 12 French Foley catheter as well as a 5.5-mm rigid cystoscope. Surgical time and short- and long-term complications were recorded. The perineal urethrostomy stoma sites of all 8 dogs were determined to be patent and no strictures were identified during the entire time course of this study. No major complications occurred during the follow-up period. Three dogs developed minor, self-resolving incisional dehiscence. The mean surgery time was 62.9 ± 14.1 minutes (mean ± SD). Canine perineal urethrostomy as described can be performed with minimal short- and long-term complications.


Urétrostomie périnéale chez le chien mâle ­ Description de la technique, résultats à court et à long terme. La technique d'urétrostomie périnéale (PU) n'a été que vaguement décrite chez le chien. De plus, les détails des complications postopératoires à court et à long terme ne sont pas bien documentés. Le but de cette étude était de fournir une description détaillée de l'UP chez les chiens mâles et de décrire l'évolution postopératoire. Huit chiens adultes, intacts, mâles et de race mixte ont été utilisés pour cette étude. Une urétrostomie périnéale a été réalisée sur chacun, en utilisant la technique décrite. Les chiens ont été évalués quotidiennement pendant 70 à 419 jours après la chirurgie, et la perméabilité du site de la stomie a été évaluée à intervalles planifiés à l'aide d'un cathéter de Foley de 12 French ainsi que d'un cystoscope rigide de 5,5 mm. Le temps opératoire et les complications à court et à long terme ont été enregistrés. Les sites de stomie de l'urétrostomie périnéale des huit chiens ont été déterminés comme étant perméables et aucune sténose n'a été identifiée pendant toute la durée de cette étude. Aucune complication majeure n'est survenue au cours de la période de suivi. Trois chiens ont développé une déhiscence incisionnelle mineure et auto-résolue. La durée moyenne de l'intervention était de 62,9 ± 14,1 minutes (moyenne ± SD). L'urétrostomie périnéale canine telle que décrite peut être réalisée avec un minimum de complications à court et à long terme.(Traduit par Dr Serge Messier).


Assuntos
Doenças do Cão , Uretra , Animais , Doenças do Cão/cirurgia , Cães , Masculino , Duração da Cirurgia , Complicações Pós-Operatórias/veterinária , Uretra/cirurgia
12.
J Cell Sci ; 131(16)2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30097556

RESUMO

All three subtypes of inositol 1,4,5-trisphosphate receptor (IP3R) are intracellular Ca2+ channels that are co-regulated by IP3 and Ca2+ This allows IP3Rs to evoke regenerative Ca2+ signals, the smallest of which are Ca2+ puffs that reflect the coordinated opening of a few clustered IP3Rs. We use total internal reflection microscopy (TIRF) microscopy to record Ca2+ signals in HEK cells expressing all three IP3R subtypes or a single native subtype. Ca2+ puffs are less frequent in cells expressing one IP3R subtype, commensurate with them expressing fewer IP3Rs than wild-type cells. However, all three IP3R subtypes generate broadly similar Ca2+ puffs with similar numbers of IP3Rs contributing to each. This suggests that IP3R clusters may be assembled by conserved mechanisms that generate similarly sized clusters across different IP3R expression levels. The Ca2+ puffs evoked by IP3R2 had slower kinetics and more prolonged durations, which may be due to IP3 binding with greater affinity to IP3R2. We conclude that Ca2+ puffs are the building blocks for the Ca2+ signals evoked by all IP3Rs.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/fisiologia , Sinalização do Cálcio/genética , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Receptores de Inositol 1,4,5-Trifosfato/classificação , Receptores de Inositol 1,4,5-Trifosfato/genética , Isoformas de Proteínas/fisiologia
13.
J Cell Sci ; 132(4)2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30552138

RESUMO

Inositol 1,4,5-trisphosphate receptors (IP3Rs) are widely expressed intracellular channels that release Ca2+ from the endoplasmic reticulum (ER). We review how studies of IP3Rs removed from their intracellular environment ('ex cellula'), alongside similar analyses of ryanodine receptors, have contributed to understanding IP3R behaviour. Analyses of permeabilized cells have demonstrated that the ER is the major intracellular Ca2+ store, and that IP3 stimulates Ca2+ release from this store. Radioligand binding confirmed that the 4,5-phosphates of IP3 are essential for activating IP3Rs, and facilitated IP3R purification and cloning, which paved the way for structural analyses. Reconstitution of IP3Rs into lipid bilayers and patch-clamp recording from the nuclear envelope have established that IP3Rs have a large conductance and select weakly between Ca2+ and other cations. Structural analyses are now revealing how IP3 binding to the N-terminus of the tetrameric IP3R opens the pore ∼7 nm away from the IP3-binding core (IBC). Communication between the IBC and pore passes through a nexus of interleaved domains contributed by structures associated with the pore and cytosolic domains, which together contribute to a Ca2+-binding site. These structural analyses provide evidence to support the suggestion that IP3 gates IP3Rs by first stimulating Ca2+ binding, which leads to pore opening and Ca2+ release.


Assuntos
Sinalização do Cálcio/fisiologia , Retículo Endoplasmático/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Animais , Cálcio/metabolismo , Humanos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
14.
BMC Biol ; 17(1): 41, 2019 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-31122229

RESUMO

BACKGROUND: Intrabodies enable targeting of proteins in live cells, but generating specific intrabodies against the thousands of proteins in a proteome poses a challenge. We leverage the widespread availability of fluorescently labelled proteins to visualize and manipulate intracellular signalling pathways in live cells by using nanobodies targeting fluorescent protein tags. RESULTS: We generated a toolkit of plasmids encoding nanobodies against red and green fluorescent proteins (RFP and GFP variants), fused to functional modules. These include fluorescent sensors for visualization of Ca2+, H+ and ATP/ADP dynamics; oligomerising or heterodimerising modules that allow recruitment or sequestration of proteins and identification of membrane contact sites between organelles; SNAP tags that allow labelling with fluorescent dyes and targeted chromophore-assisted light inactivation; and nanobodies targeted to lumenal sub-compartments of the secretory pathway. We also developed two methods for crosslinking tagged proteins: a dimeric nanobody, and RFP-targeting and GFP-targeting nanobodies fused to complementary hetero-dimerizing domains. We show various applications of the toolkit and demonstrate, for example, that IP3 receptors deliver Ca2+ to the outer membrane of only a subset of mitochondria and that only one or two sites on a mitochondrion form membrane contacts with the plasma membrane. CONCLUSIONS: This toolkit greatly expands the utility of intrabodies and will enable a range of approaches for studying and manipulating cell signalling in live cells.


Assuntos
Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/metabolismo , Transdução de Sinais/genética , Anticorpos de Domínio Único/administração & dosagem , Animais , Células COS , Chlorocebus aethiops , Células HeLa , Humanos , Plasmídeos/metabolismo , Anticorpos de Domínio Único/metabolismo , Proteína Vermelha Fluorescente
15.
Vet Radiol Ultrasound ; 61(1): 10-15, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31574571

RESUMO

Previous studies have demonstrated evidence that normal reference ranges for radiographic vertebral heart scale values can vary among dog breeds. The purpose of this retrospective, observational study was to determine whether the normal vertebral heart scale values published by Buchanan and Bücheler for lateral radiographs are applicable to the Norwich terrier. Secondary objectives were to determine if clinical signs of respiratory disease, age, sex, weight, body condition score, recumbency, or thoracic depth-to-width ratio had any influence on vertebral heart scale measurements in this breed. The electronic medical record systems of two universities were reviewed and Norwich terriers were included in the study if they had orthogonal thoracic radiographs performed and no historical or radiographic evidence of cardiopulmonary disease. A vertebral heart scale was calculated for each patient. Sixty-one client-owned, Norwich terrier dogs with no clinical signs of cardiovascular disease were evaluated. The vertebral heart scale for Norwich terriers without evidence of cardiac disease (10.6 ± 0.6) was found to be significantly greater than the canine reference value of 9.7 ± 0.5 initially established by Buchanan and Bücheler. No significant correlation was found between clinical signs of respiratory disease, sex, age, thoracic depth-to-width ratio or lateral recumbency, and vertebral heart scale. Norwich terriers with a body condition score ≥6 had a significantly higher vertebral heart scale than those with a body condition score ≤5. Breed-specific ranges and body condition scores need to be considered when interpreting vertebral heart scale values for Norwich terriers.


Assuntos
Cães/anatomia & histologia , Coração/diagnóstico por imagem , Radiografia/veterinária , Animais , Feminino , Coração/anatomia & histologia , Masculino , Valores de Referência , Estudos Retrospectivos , Especificidade da Espécie
16.
J Cell Sci ; 130(21): 3728-3739, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28893841

RESUMO

The building blocks of intracellular Ca2+ signals evoked by inositol 1,4,5-trisphosphate receptors (IP3Rs) are Ca2+ puffs, transient focal increases in Ca2+ concentration that reflect the opening of small clusters of IP3Rs. We use total internal reflection fluorescence microscopy and automated analyses to detect Ca2+ puffs evoked by photolysis of caged IP3 or activation of endogenous muscarinic receptors with carbachol in human embryonic kidney 293 cells. Ca2+ puffs evoked by carbachol initiated at an estimated 65±7 sites/cell, and the sites remained immobile for many minutes. Photolysis of caged IP3 evoked Ca2+ puffs at a similar number of sites (100±35). Increasing the carbachol concentration increased the frequency of Ca2+ puffs without unmasking additional Ca2+ release sites. By measuring responses to sequential stimulation with carbachol or photolysed caged IP3, we established that the two stimuli evoked Ca2+ puffs at the same sites. We conclude that IP3-evoked Ca2+ puffs initiate at numerous immobile sites and the sites become more likely to fire as the IP3 concentration increases; there is no evidence that endogenous signalling pathways selectively deliver IP3 to specific sites.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Carbacol/farmacologia , Agonistas Colinérgicos/farmacologia , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Inositol 1,4,5-Trifosfato/análogos & derivados , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Microscopia de Fluorescência , Fotólise , Receptores Muscarínicos/genética , Receptores Muscarínicos/metabolismo
17.
J Cell Sci ; 129(20): 3903-3910, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27591258

RESUMO

Store-operated Ca2+ entry (SOCE) occurs when loss of Ca2+ from the endoplasmic reticulum (ER) stimulates the Ca2+ sensor, STIM, to cluster and activate the plasma membrane Ca2+ channel Orai (encoded by Olf186-F in flies). Inositol 1,4,5-trisphosphate receptors (IP3Rs, which are encoded by a single gene in flies) are assumed to regulate SOCE solely by mediating ER Ca2+ release. We show that in Drosophila neurons, mutant IP3R attenuates SOCE evoked by depleting Ca2+ stores with thapsigargin. In normal neurons, store depletion caused STIM and the IP3R to accumulate near the plasma membrane, association of STIM with Orai, clustering of STIM and Orai at ER-plasma-membrane junctions and activation of SOCE. These responses were attenuated in neurons with mutant IP3Rs and were rescued by overexpression of STIM with Orai. We conclude that, after depletion of Ca2+ stores in Drosophila, translocation of the IP3R to ER-plasma-membrane junctions facilitates the coupling of STIM to Orai that leads to activation of SOCE.


Assuntos
Cálcio/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Proteínas Mutantes/metabolismo , Neurônios/metabolismo , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Animais , Sinalização do Cálcio , Membrana Celular/metabolismo , Galinhas , Modelos Biológicos , Vertebrados/metabolismo
18.
Nature ; 483(7387): 108-12, 2012 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-22286060

RESUMO

Inositol-1,4,5-trisphosphate receptors (InsP(3)Rs) and ryanodine receptors (RyRs) are tetrameric intracellular Ca(2+) channels. In each of these receptor families, the pore, which is formed by carboxy-terminal transmembrane domains, is regulated by signals that are detected by large cytosolic structures. InsP(3)R gating is initiated by InsP(3) binding to the InsP(3)-binding core (IBC, residues 224-604 of InsP(3)R1) and it requires the suppressor domain (SD, residues 1-223 of InsP(3)R1). Here we present structures of the amino-terminal region (NT, residues 1-604) of rat InsP(3)R1 with (3.6 Å) and without (3.0 Å) InsP(3) bound. The arrangement of the three NT domains, SD, IBC-ß and IBC-α, identifies two discrete interfaces (α and ß) between the IBC and SD. Similar interfaces occur between equivalent domains (A, B and C) in RyR1 (ref. 9). The orientations of the three domains when docked into a tetrameric structure of InsP(3)R and of the ABC domains docked into RyR are remarkably similar. The importance of the α-interface for activation of InsP(3)R and RyR is confirmed by mutagenesis and, for RyR, by disease-causing mutations. Binding of InsP(3) causes partial closure of the clam-like IBC, disrupting the ß-interface and pulling the SD towards the IBC. This reorients an exposed SD loop ('hotspot' (HS) loop) that is essential for InsP(3)R activation. The loop is conserved in RyR and includes mutations that are associated with malignant hyperthermia and central core disease. The HS loop interacts with an adjacent NT, suggesting that activation re-arranges inter-subunit interactions. The A domain of RyR functionally replaced the SD in full-length InsP(3)R, and an InsP(3)R in which its C-terminal transmembrane region was replaced by that from RyR1 was gated by InsP(3) and blocked by ryanodine. Activation mechanisms are conserved between InsP(3)R and RyR. Allosteric modulation of two similar domain interfaces within an N-terminal subunit reorients the first domain (SD or A domain), allowing it, through interactions of the second domain of an adjacent subunit (IBC-ß or B domain), to gate the pore.


Assuntos
Receptores de Inositol 1,4,5-Trifosfato/química , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Sequência de Aminoácidos , Animais , Apoproteínas/química , Apoproteínas/metabolismo , Microscopia Crioeletrônica , Inositol 1,4,5-Trifosfato/química , Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Conformação Proteica , Estrutura Terciária de Proteína , Coelhos , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética
19.
Mol Pharmacol ; 92(5): 533-545, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28877931

RESUMO

In human aortic smooth muscle cells, prostaglandin E2 (PGE2) stimulates adenylyl cyclase (AC) and attenuates the increase in intracellular free Ca2+ concentration evoked by activation of histamine H1 receptors. The mechanisms are not resolved. We show that cAMP mediates inhibition of histamine-evoked Ca2+ signals by PGE2 Exchange proteins activated by cAMP were not required, but the effects were attenuated by inhibition of cAMP-dependent protein kinase (PKA). PGE2 had no effect on the Ca2+ signals evoked by protease-activated receptors, heterologously expressed muscarinic M3 receptors, or by direct activation of inositol 1,4,5-trisphosphate (IP3) receptors by photolysis of caged IP3 The rate of Ca2+ removal from the cytosol was unaffected by PGE2, but PGE2 attenuated histamine-evoked IP3 accumulation. Substantial inhibition of AC had no effect on the concentration-dependent inhibition of Ca2+ signals by PGE2 or butaprost (to activate EP2 receptors selectively), but it modestly attenuated responses to EP4 receptors, activation of which generated less cAMP than EP2 receptors. We conclude that inhibition of histamine-evoked Ca2+ signals by PGE2 occurs through "hyperactive signaling junctions," wherein cAMP is locally delivered to PKA at supersaturating concentrations to cause uncoupling of H1 receptors from phospholipase C. This sequence allows digital signaling from PGE2 receptors, through cAMP and PKA, to histamine-evoked Ca2+ signals.


Assuntos
Cálcio/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Dinoprostona/farmacologia , Histamina/farmacologia , Miócitos de Músculo Liso/metabolismo , Aorta/efeitos dos fármacos , Aorta/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Masculino , Pessoa de Meia-Idade , Miócitos de Músculo Liso/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Adulto Jovem
20.
J Neurochem ; 142(6): 876-885, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28677119

RESUMO

Extracellular ATP plays important roles in coordinating the activities of astrocytes and neurons, and aberrant signalling is associated with neurodegenerative diseases. In rodents, ATP stimulates opening of Ca2+ -permeable channels formed by P2X receptor subunits in the plasma membrane. It is widely assumed, but not verified, that P2X receptors also evoke Ca2+ signals in human astrocytes. Here, we directly assess this hypothesis. We showed that cultured foetal cortical human astrocytes express mRNA for several P2X receptor subunits (P2X4 , P2X5 , P2X6 ) and G protein-coupled P2Y receptors (P2Y1 , P2Y2 , P2Y6 , P2Y11 ). In these astrocytes, ATP stimulated Ca2+ release from intracellular stores through IP3 receptors and store-operated Ca2+ entry. These responses were entirely mediated by P2Y1 and P2Y2 receptors. Agonists of P2X receptors did not evoke Ca2+ signals, and nor did ATP when Ca2+ release from intracellular stores and store-operated Ca2+ entry were inhibited. We conclude that ATP-evoked Ca2+ signals in cultured human foetal astrocytes are entirely mediated by P2Y1 and P2Y2 receptors, with no contribution from P2X receptors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA