Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochemistry ; 63(7): 939-951, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38507812

RESUMO

MshA is a GT-B glycosyltransferase catalyzing the first step in the biosynthesis of mycothiol. While many GT-B enzymes undergo an open-to-closed transition, MshA is unique because its 97° rotation is beyond the usual range of 10-25°. Molecular dynamics (MD) simulations were carried out for MshA in both ligand bound and unbound states to investigate the effect of ligand binding on localized protein dynamics and its conformational free energy landscape. Simulations showed that both the unliganded "opened" and liganded "closed" forms of the enzyme sample a wide degree of dihedral angles and interdomain distances with relatively low overlapping populations. Calculation of the free energy surface using replica exchange MD for the apo "opened" and an artificial generated apo "closed" structure revealed overlaps in the geometries sampled, allowing calculation of a barrier of 2 kcal/mol for the open-to-closed transition in the absence of ligands. MD simulations of fully liganded MshA revealed a smaller sampling of the dihedral angles. The localized protein fluctuation changes suggest that UDP-GlcNAc binding activates the motions of loops in the 1-l-myo-inositol-1-phosphate (I1P)-binding site despite little change in the interactions with UDP-GlcNAc. Circular dichroism, intrinsic fluorescence spectroscopy, and mutagenesis studies were used to confirm the ligand-induced structural changes in MshA. The results support a proposed mechanism where UDP-GlcNAc binds with rigid interactions to the C-terminal domain of MshA and activates flexible loops in the N-terminal domain for binding and positioning of I1P. This model can be used for future structure-based drug development of inhibitors of the mycothiol biosynthetic pathway.


Assuntos
Corynebacterium glutamicum , Cisteína , Glicopeptídeos , Glicosiltransferases , Inositol , Glicosiltransferases/metabolismo , Ligantes , Fosfatos de Inositol/metabolismo , Difosfato de Uridina/metabolismo , Conformação Proteica , Simulação de Dinâmica Molecular
2.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37047291

RESUMO

Protocatechuate 4,5-dioxygenase (LigAB) is a heterodimeric enzyme that catalyzes the dioxygenation of multiple lignin derived aromatic compounds. The active site of LigAB is at the heterodimeric interface, with specificity conferred by the alpha subunit and catalytic residues contributed by the beta subunit. Previous research has indicated that the phenylalanine at the 103 position of the alpha subunit (F103α) controls selectivity for the C5 position of the aromatic substrates, and mutations of this residue can enhance the rate of catalysis for substrates with larger functional groups at this position. While several of the mutations to this position (Valine, V; Threonine, T; Leucine, L; and Histidine, H) were catalytically active, other mutations (Alanine, A; and Serine, S) were found to have reduced dimer interface affinity, leading to challenges in copurifing the catalytically active enzyme complex under high salt conditions. In this study, we aimed to experimentally and computationally interrogate residues at the dimer interface to discern the importance of position 103α for maintaining the integrity of the heterodimer. Molecular dynamic simulations and electrophoretic mobility assays revealed a preference for nonpolar/aromatic amino acids in this position, suggesting that while substitutions to polar amino acids may produce a dioxygenase with a useful substrate utilization profile, those considerations may be off-set by potential destabilization of the catalytically active oligomer. Understanding the dimerization of LigAB provides insight into the multimeric proteins within the largely uncharacterized superfamily and characteristics to consider when engineering proteins that can degrade lignin efficiently. These results shed light on the challenges associated with engineering proteins for broader substrate specificity.


Assuntos
Dioxigenases , Sphingomonadaceae , Dioxigenases/genética , Dioxigenases/metabolismo , Substituição de Aminoácidos , Lignina/metabolismo , Mutação
3.
Biochemistry ; 61(15): 1572-1584, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35861590

RESUMO

Glycosyltransferase (GT) enzymes promote the formation of glycosidic bonds between a sugar molecule and a diversity of substrates. Heptosyltransferase II (HepII) is a GT involved in the lipopolysaccharide (LPS) biosynthetic pathway that transfers the seven-carbon sugar (l-glycero-d-manno-heptose, Hep) onto a lipid-anchored glycopolymer (heptosylated Kdo2-Lipid A, Hep-Kdo2-Lipid A, or HLA). LPS plays a key role in Gram-negative bacterial sepsis, biofilm formation, and host colonization, and as such, LPS biosynthetic enzymes are targets for novel antimicrobial therapeutics. Three heptosyltransferases are involved in the inner-core LPS biosynthesis, with Escherichia coli HepII being the last to be quantitatively characterized in vivo. HepII shares modest sequence similarity with heptosyltransferase I (HepI) while maintaining a high degree of structural homology. Here, we report the first kinetic and biophysical characterization of HepII and demonstrate the properties of HepII that are shared with HepI, including sugar donor promiscuity and sugar acceptor-induced secondary structural changes, which results in significant thermal stabilization. HepII also has an increased catalytic efficiency and a significantly tighter binding affinity for both of its substrates compared to HepI. A structural model of the HepII ternary complex, refined by molecular dynamics simulations, was developed to probe the potentially important substrate-protein contacts. Ligand binding-induced changes in Trp fluorescence in HepII enabled the determination of substrate dissociation constants. Combined, these efforts meaningfully enhance our understanding of the heptosyltransferase family of enzymes and will aid in future efforts to design novel, potent, and specific inhibitors for this family of enzymes.


Assuntos
Escherichia coli , Glicosiltransferases , Lipídeo A , Catálise , Escherichia coli/enzimologia , Glicosiltransferases/metabolismo , Heptoses/química , Lipídeo A/metabolismo , Lipopolissacarídeos , Simulação de Dinâmica Molecular
4.
J Chem Inf Model ; 62(2): 324-339, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-34967618

RESUMO

Understanding the dynamical motions and ligand recognition motifs of heptosyltransferase I (HepI) can be critical to discerning the behavior of other glycosyltransferase (GT) enzymes. Prior studies in our lab have demonstrated that GTs in the GT-B structural class, which are characterized by their connection of two Rossman-like domains by a linker region, have conserved structural fold and dynamical motions, despite low sequence homology, therefore making discoveries found in HepI transferable to other GT-B enzymes. Through molecular dynamics simulations and ligand binding free energy analysis of HepI in the apo and bound complexes (for all kinetically relevant combinations of the native substrates/products), we have determined the energetically favored enzymatic pathway for ligand binding and release. Our principal component, dynamic cross correlation, and network analyses of the simulations have revealed correlated motions involving residues within the N-terminal domain communicating with C-terminal domain residues via both proximal amino acid residues and also functional groups of the bound substrates. Analyses of the structural changes, energetics of substrate/product binding, and changes in pKa have elucidated a variety of inter and intradomain interactions that are critical for enzyme catalysis. These data corroborate our experimental observations of protein conformational changes observed in both presteady state kinetic and circular dichroism analyses of HepI. These simulations provided invaluable structural insights into the regions involved in HepI conformational rearrangement upon ligand binding. Understanding the specific interactions governing conformational changes is likely to enhance our efforts to develop novel dynamics disrupting inhibitors against GT-B structural enzymes in the future.


Assuntos
Glicosiltransferases , Simulação de Dinâmica Molecular , Glicosiltransferases/química , Ligantes , Conformação Proteica
5.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33924837

RESUMO

It has long been understood that some proteins undergo conformational transitions en route to the Michaelis Complex to allow chemistry. Examination of crystal structures of glycosyltransferase enzymes in the GT-B structural class reveals that the presence of ligand in the active site triggers an open-to-closed conformation transition, necessary for their catalytic functions. Herein, we describe microsecond molecular dynamics simulations of two distantly related glycosyltransferases that are part of the GT-B structural superfamily, HepI and GtfA. Simulations were performed using the open and closed conformations of these unbound proteins, respectively, and we sought to identify the major dynamical modes and communication networks that interconnect the open and closed structures. We provide the first reported evidence within the scope of our simulation parameters that the interconversion between open and closed conformations is a hierarchical multistep process which can be a conserved feature of enzymes of the same structural superfamily. Each of these motions involves of a collection of smaller molecular reorientations distributed across both domains, highlighting the complexities of protein dynamic involved in the interconversion process. Additionally, dynamic cross-correlation analysis was employed to explore the potential effect of distal residues on the catalytic efficiency of HepI. Multiple distal nonionizable residues of the C-terminal domain exhibit motions anticorrelated to positively charged residues in the active site in the N-terminal domain involved in substrate binding. Mutations of these residues resulted in a reduction in negatively correlated motions and an altered enzymatic efficiency that is dominated by lower Km values with kcat effectively unchanged. The findings suggest that residues with opposing conformational motions involved in the opening and closing of the bidomain HepI protein can allosterically alter the population and conformation of the "closed" state, essential to the formation of the Michaelis complex. The stabilization effects of these mutations likely equally influence the energetics of both the ground state and the transition state of the catalytic reaction, leading to the unaltered kcat. Our study provides new insights into the role of conformational dynamics in glycosyltransferase's function and new modality to modulate enzymatic efficiency.


Assuntos
Glicosiltransferases/metabolismo , Transaminases/metabolismo , Glicosiltransferases/química , Glicosiltransferases/genética , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Transaminases/química , Transaminases/genética
6.
Biochemistry ; 59(34): 3135-3147, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32011131

RESUMO

Gram-negative bacterial viability is greatly reduced by the disruption of heptose sugar addition during the biosynthesis of lipopolysaccharide (LPS), an important bacterial outer membrane component. Heptosyltransferase I (HepI), a member of the GT-B structural subclass of glycosyltransferases, is therefore an essential enzyme for the biosynthesis of the LPS. The disruption of HepI also increases the susceptibility of bacteria to hydrophobic antibiotics, making HepI a potential target for drug development. In this work, the structural and dynamic properties of the catalytic cycle of HepI are explored. Previously, substrate-induced stabilization of HepI was observed and hypothesized to be assisted by interactions between the substrate and residues located on dynamic loops. Herein, positively charged amino acids were probed to identify binding partners of the negatively charged phosphates and carboxylates of Kdo2-lipid A and its analogues. Mutant enzymes were characterized to explore changes in enzymatic activities and protein stability. Molecular modeling of HepI in the presence and absence of ligands was then performed with the wild type and mutant enzyme to allow determination of the relative change in substrate binding affinity resulting from each mutation. Together, these studies suggest that multiple residues are involved in mediating substrate binding, and a lack of additivity of these effects illustrates the functional redundancy of these binding interactions. The redundancy of residues mediating conformational transitions in HepI illustrates the evolutionary importance of these structural rearrangements for catalysis. This work enhances the understanding of HepI's protein dynamics and mechanism and is a model for improving our understanding of glycosyltransferase enzymes.


Assuntos
Escherichia coli/enzimologia , Glicosiltransferases/química , Glicosiltransferases/metabolismo , Glicosiltransferases/genética , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Conformação Proteica , Alinhamento de Sequência
7.
J Biol Chem ; 294(26): 10211-10235, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31092555

RESUMO

A diverse collection of enzymes comprising the protocatechuate dioxygenases (PCADs) has been characterized in several extradiol aromatic compound degradation pathways. Structural studies have shown a relationship between PCADs and the more broadly-distributed, functionally enigmatic Memo domain linked to several human diseases. To better understand the evolution of this PCAD-Memo protein superfamily, we explored their structural and functional determinants to establish a unified evolutionary framework, identifying 15 clearly-delineable families, including a previously-underappreciated diversity in five Memo clade families. We place the superfamily's origin within the greater radiation of the nucleoside phosphorylase/hydrolase-peptide/amidohydrolase fold prior to the last universal common ancestor of all extant organisms. In addition to identifying active-site residues across the superfamily, we describe three distinct, structurally-variable regions emanating from the core scaffold often housing conserved residues specific to individual families. These were predicted to contribute to the active-site pocket, potentially in substrate specificity and allosteric regulation. We also identified several previously-undescribed conserved genome contexts, providing insight into potentially novel substrates in PCAD clade families. We extend known conserved contextual associations for the Memo clade beyond previously-described associations with the AMMECR1 domain and a radical S-adenosylmethionine family domain. These observations point to two distinct yet potentially overlapping contexts wherein the elusive molecular function of the Memo domain could be finally resolved, thereby linking it to nucleotide base and aliphatic isoprenoid modification. In total, this report throws light on the functions of large swaths of the experimentally-uncharacterized PCAD-Memo families.


Assuntos
Dioxigenases/química , Dioxigenases/metabolismo , Família Multigênica , S-Adenosilmetionina/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Dioxigenases/genética , Humanos , Modelos Moleculares , Oxirredução , Conformação Proteica , Homologia de Sequência , Especificidade por Substrato
8.
PLoS Genet ; 13(5): e1006786, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28542428

RESUMO

Understanding the cellular-molecular substrates of heart disease is key to the development of cardiac specific therapies and to the prevention of off-target effects by non-cardiac targeted drugs. One of the primary targets for therapeutic intervention has been the human ether a go-go (hERG) K+ channel that, together with the KCNQ channel, controls the rate and efficiency of repolarization in human myocardial cells. Neither of these channels plays a major role in adult mouse heart function; however, we show here that the hERG homolog seizure (sei), along with KCNQ, both contribute significantly to adult heart function as they do in humans. In Drosophila, mutations in or cardiac knockdown of sei channels cause arrhythmias that become progressively more severe with age. Intracellular recordings of semi-intact heart preparations revealed that these perturbations also cause electrical remodeling that is reminiscent of the early afterdepolarizations seen in human myocardial cells defective in these channels. In contrast to KCNQ, however, mutations in sei also cause extensive structural remodeling of the myofibrillar organization, which suggests that hERG channel function has a novel link to sarcomeric and myofibrillar integrity. We conclude that deficiency of ion channels with similar electrical functions in cardiomyocytes can lead to different types or extents of electrical and/or structural remodeling impacting cardiac output.


Assuntos
Arritmias Cardíacas/genética , Proteínas de Drosophila/genética , Drosophila/genética , Canais de Potássio KCNQ/genética , Mutação , Miócitos Cardíacos/fisiologia , Potenciais de Ação , Animais , Drosophila/crescimento & desenvolvimento , Drosophila/fisiologia , Proteínas de Drosophila/metabolismo , Canais de Potássio KCNQ/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia
9.
Arch Biochem Biophys ; 639: 38-43, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29288052

RESUMO

Sucralose is a commonly employed artificial sweetener that appears to destabilize protein native structures. This is in direct contrast to the bio-preservative nature of its natural counterpart, sucrose, which enhances the stability of biomolecules against environmental stress. We have further explored the molecular interactions of sucralose as compared to sucrose to illuminate the origin of the differences in their bio-preservative efficacy. We show that the mode of interactions of sucralose and sucrose in bulk solution differ subtly through the use of hydration dynamics measurement and computational simulation. Sucralose does not appear to disturb the native state of proteins for moderate concentrations (<0.2 M) at room temperature. However, as the concentration increases, or in the thermally stressed state, sucralose appears to differ in its interactions with protein leading to the reduction of native state stability. This difference in interaction appears weak. We explored the difference in the preferential exclusion model using time-resolved spectroscopic techniques and observed that both molecules appear to be effective reducers of bulk hydration dynamics. However, the chlorination of sucralose appears to slightly enhance the hydrophobicity of the molecule, which reduces the preferential exclusion of sucralose from the protein-water interface. The weak interaction of sucralose with hydrophobic pockets on the protein surface differs from the behavior of sucrose. We experimentally followed up upon the extent of this weak interaction using isothermal titration calorimetry (ITC) measurements. We propose this as a possible origin for the difference in their bio-preservative properties.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Modelos Químicos , Muramidase/química , Sacarose/análogos & derivados , Animais , Galinhas , Sacarose/química
10.
Bioorg Med Chem Lett ; 28(4): 594-600, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29398539

RESUMO

Gram-negative bacteria comprise the majority of microbes that cause infections that are resistant to pre-existing antibiotics. The complex cell wall architecture contributes to their ability to form biofilms, which are often implicated in hospital-acquired infections. Biofilms promote antibiotic resistance by enabling the bacteria to survive hostile environments such as UV radiation, pH shifts, and antibiotics. The outer membrane of Gram-negative bacteria contains lipopolysaccharide (LPS), which plays a role in adhesion to surfaces and formation of biofilms. The main focus of this work was the synthesis of a library of glycolipids designed to be simplified analogues of the Lipid A, the membrane embedded portion component of LPS, to be tested as substrates or inhibitors of Heptosyltransferase I (HepI or WaaC, a glycosyltransferase enzyme involved in the biosynthesis of LPS). Fourteen analogues were synthesized successfully and characterized. While these compounds were designed to function as nucleophilic substrates of HepI, they all demonstrated mild inhibition of HepI. Kinetic characterization of inhibition mechanism identified that the compounds exhibited uncompetitive and mixed inhibition of HepI. Since both uncompetitive and mixed inhibition result in the formation of an Enzyme-Substrate-inhibitor complex, molecular docking studies (using AutoDock Vina) were performed, to identify potential allosteric binding site for these compounds. The inhibitors were shown to bind to a pocket formed after undergoing a conformational change from an open to a closed active site state. Inhibition of HepI via an allosteric site suggest that disruption of protein dynamics might be a viable mechanism for the inhibition of HepI and potentially other enzymes of the GT-B structural class.


Assuntos
Antibacterianos/farmacologia , Inibidores Enzimáticos/farmacologia , Proteínas de Escherichia coli/antagonistas & inibidores , Galactosídeos/farmacologia , Glucosídeos/farmacologia , Glicosiltransferases/antagonistas & inibidores , Antibacterianos/síntese química , Antibacterianos/química , Sítios de Ligação , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Escherichia coli/enzimologia , Proteínas de Escherichia coli/química , Galactosídeos/síntese química , Galactosídeos/química , Glucosídeos/síntese química , Glucosídeos/química , Glicosiltransferases/química , Cinética , Lipídeo A/análogos & derivados , Lipídeo A/síntese química , Lipídeo A/química , Lipídeo A/farmacologia , Simulação de Acoplamento Molecular
11.
Biochemistry ; 56(6): 886-895, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28098447

RESUMO

Heptosyltransferase I (HepI) catalyzes the addition of l-glycero-ß-d-manno-heptose to Kdo2-Lipid A, as part of the biosynthesis of the core region of lipopolysaccharide (LPS). Gram-negative bacteria with gene knockouts of HepI have reduced virulence and enhanced susceptibility to hydrophobic antibiotics, making the design of inhibitors of HepI of interest. Because HepI protein dynamics are partially rate-limiting, disruption of protein dynamics might provide a new strategy for inhibiting HepI. Discerning the global mechanism of HepI is anticipated to aid development of inhibitors of LPS biosynthesis. Herein, dynamic protein rearrangements involved in the HepI catalytic cycle were probed by combining mutagenesis with intrinsic tryptophan fluorescence and circular dichroism analyses. Using wild-type and mutant forms of HepI, multiple dynamic regions were identified via changes in Trp fluorescence. Interestingly, Trp residues (Trp199 and Trp217) in the C-terminal domain (which binds ADP-heptose) are in a more hydrophobic environment upon binding of ODLA to the N-terminal domain. These residues are adjacent to the ADP-heptose binding site (with Trp217 in van der Waals contact with the adenine ring of ADP-heptose), suggesting that the two binding sites interact to report on the occupancy state of the enzyme. ODLA binding was also accompanied by a significant stabilization of HepI (heating to 95 °C fails to denature the protein when it is in the presence of ODLA). These results suggest that conformational rearrangements, from an induced fit model of substrate binding to HepI, are important for catalysis, and the disruption of these conformational dynamics may serve as a novel mechanism for inhibiting this and other glycosyltransferase enzymes.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Glicosiltransferases/metabolismo , Lipídeo A/metabolismo , Modelos Moleculares , Acilação , Substituição de Aminoácidos , Apoenzimas/antagonistas & inibidores , Apoenzimas/química , Apoenzimas/genética , Apoenzimas/metabolismo , Sítios de Ligação , Biocatálise , Dicroísmo Circular , Estabilidade Enzimática , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Glicosiltransferases/antagonistas & inibidores , Glicosiltransferases/química , Glicosiltransferases/genética , Lipídeo A/química , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Mutação , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Solubilidade , Solventes/química , Espectrometria de Fluorescência , Propriedades de Superfície , Triptofano/química
12.
PLoS Genet ; 10(9): e1004625, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25210771

RESUMO

In a broad variety of bilaterian species the trunk central nervous system (CNS) derives from three primary rows of neuroblasts. The fates of these neural progenitor cells are determined in part by three conserved transcription factors: vnd/nkx2.2, ind/gsh and msh/msx in Drosophila melanogaster/vertebrates, which are expressed in corresponding non-overlapping patterns along the dorsal-ventral axis. While this conserved suite of "neural identity" gene expression strongly suggests a common ancestral origin for the patterning systems, it is unclear whether the original regulatory mechanisms establishing these patterns have been similarly conserved during evolution. In Drosophila, genetic evidence suggests that Bone Morphogenetic Proteins (BMPs) act in a dosage-dependent fashion to repress expression of neural identity genes. BMPs also play a dose-dependent role in patterning the dorsal and lateral regions of the vertebrate CNS, however, the mechanism by which they achieve such patterning has not yet been clearly established. In this report, we examine the mechanisms by which BMPs act on cis-regulatory modules (CRMs) that control localized expression of the Drosophila msh and zebrafish (Danio rerio) msxB in the dorsal central nervous system (CNS). Our analysis suggests that BMPs act differently in these organisms to regulate similar patterns of gene expression in the neuroectoderm: repressing msh expression in Drosophila, while activating msxB expression in the zebrafish. These findings suggest that the mechanisms by which the BMP gradient patterns the dorsal neuroectoderm have reversed since the divergence of these two ancient lineages.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas de Drosophila/genética , Drosophila/genética , Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Placa Neural/metabolismo , Vertebrados/genética , Vertebrados/metabolismo , Animais , Sítios de Ligação , Sequência Conservada , Genômica , Proteína Homeobox Nkx-2.2 , Placa Neural/embriologia , Ligação Proteica , Transdução de Sinais , Elementos Silenciadores Transcricionais , Proteínas de Peixe-Zebra
13.
Int J Mol Sci ; 18(11)2017 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-29077008

RESUMO

Bacterial antibiotic resistance is a rapidly expanding problem in the world today. Functionalization of the outer membrane of Gram-negative bacteria provides protection from extracellular antimicrobials, and serves as an innate resistance mechanism. Lipopolysaccharides (LPS) are a major cell-surface component of Gram-negative bacteria that contribute to protecting the bacterium from extracellular threats. LPS is biosynthesized by the sequential addition of sugar moieties by a number of glycosyltransferases (GTs). Heptosyltransferases catalyze the addition of multiple heptose sugars to form the core region of LPS; there are at most four heptosyltransferases found in all Gram-negative bacteria. The most studied of the four is HepI. Cells deficient in HepI display a truncated LPS on their cell surface, causing them to be more susceptible to hydrophobic antibiotics. HepI-IV are all structurally similar members of the GT-B structural family, a class of enzymes that have been found to be highly dynamic. Understanding conformational changes of heptosyltransferases are important to efficiently inhibiting them, but also contributing to the understanding of all GT-B enzymes. Finding new and smarter methods to inhibit bacterial growth is crucial, and the Heptosyltransferases may provide an important model for how to inhibit many GT-B enzymes.


Assuntos
Glicosiltransferases/metabolismo , Lipopolissacarídeos/metabolismo , Animais , Domínio Catalítico , Glicosiltransferases/química , Humanos , Lipopolissacarídeos/química , Modelos Moleculares , Homologia de Sequência , Relação Estrutura-Atividade
14.
Arch Biochem Biophys ; 567: 35-45, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25562402

RESUMO

The protocatechuate 4,5-dioxygenase (LigAB) from Sphingobium sp. strain SYK-6 is the defining member of the Type II extradiol dioxygenase superfamily (a.k.a. PCA Dioxygenase Superfamily or PCADSF) and plays a key aromatic ring-opening role in the metabolism of several lignin derived aromatic compounds. In our search for alternate substrates and inhibitors of LigAB, we discovered allosteric rate enhancement in the presence of non-substrate protocatechuate-like aldehydes such as vanillin. LigAB has the broadest substrate utilization profile of all protocatechuate (PCA) 4,5-dioxygenase described in the literature, however, the rate enhancement is only observed with PCA, with vanillin increasing kcat for LigAB by 36%. Computational docking has identified a potential site of allosteric binding near the entrance to the active site. Examination of a multiple sequence alignment reveals that many of the residues contributing to this newly identified allosteric pocket are highly conserved within the LigB family of the PCADSF. Point mutants of Phe103α and Ala18ß, two residues located in the putative allosteric pocket, display altered rate enhancement as compared to LigAB-WT, providing support for the computationally identified allosteric binding site. Further investigation of this binding site may provide insight into the mechanism of this never before observed allosteric activation in extradiol dioxygenases.


Assuntos
Dioxigenases/química , Dioxigenases/metabolismo , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Sphingomonadaceae/enzimologia , Sítio Alostérico , Benzaldeídos/metabolismo , Dioxigenases/genética , Ativação Enzimática , Cinética , Conformação Proteica
15.
Biochemistry ; 52(38): 6724-36, 2013 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-23977959

RESUMO

LigAB from Sphingomonas paucimobilis SYK-6 is the only structurally characterized dioxygenase of the largely uncharacterized superfamily of Type II extradiol dioxygenases (EDO). This enzyme catalyzes the oxidative ring-opening of protocatechuate (3,4-dihydroxybenzoic acid or PCA) in a pathway allowing the degradation of lignin derived aromatic compounds (LDACs). LigAB has also been shown to utilize two other LDACs from the same metabolic pathway as substrates, gallate, and 3-O-methyl gallate; however, kcat/KM had not been reported for any of these compounds. In order to assess the catalytic efficiency and get insights into the observed promiscuity of this enzyme, steady-state kinetic analyses were performed for LigAB with these and a library of related compounds. The dioxygenation of PCA by LigAB was highly efficient, with a kcat of 51 s(-1) and a kcat/KM of 4.26 × 10(6) M(-1)s(-1). LigAB demonstrated the ability to use a variety of catecholic molecules as substrates beyond the previously identified gallate and 3-O-methyl gallate, including 3,4-dihydroxybenzamide, homoprotocatechuate, catechol, and 3,4-dihydroxybenzonitrile. Interestingly, 3,4-dihydroxybenzamide (DHBAm) behaves in a manner similar to that of the preferred benzoic acid substrates, with a kcat/Km value only ∼4-fold lower than that for gallate and ∼10-fold higher than that for 3-O-methyl gallate. All of these most active substrates demonstrate mechanistic inactivation of LigAB. Additionally, DHBAm exhibits potent product inhibition that leads to an inactive enzyme, being more highly deactivating at lower substrate concentration, a phenomena that, to our knowledge, has not been reported for another dioxygenase substrate/product pair. These results provide valuable catalytic insight into the reactions catalyzed by LigAB and make it the first Type II EDO that is fully characterized both structurally and kinetically.


Assuntos
Proteínas de Bactérias/metabolismo , Dioxigenases/metabolismo , Hidroxibenzoatos/metabolismo , Lignina/metabolismo , Oxigenases/metabolismo , Anaerobiose , Proteínas de Bactérias/efeitos adversos , Proteínas de Bactérias/isolamento & purificação , Dioxigenases/antagonistas & inibidores , Dioxigenases/isolamento & purificação , Concentração de Íons de Hidrogênio , Ferro/metabolismo , Cinética , Sphingomonas/enzimologia , Especificidade por Substrato
16.
Biochemistry ; 52(31): 5158-60, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23865375

RESUMO

Heptosyltransferase I (HepI), the enzyme responsible for the transfer of l-glycero-d-manno-heptose to a 3-deoxy-α-d-manno-oct-2-ulopyranosonic acid (Kdo) of the growing core region of lipopolysaccharide, is a member of the GT-B structural class of enzymes. Crystal structures have revealed open and closed conformations of apo and ligand-bound GT-B enzymes, implying that large-scale protein conformational dynamics play a role in their reaction mechanism. Here we report transient kinetic analysis of conformational changes in HepI reported by intrinsic tryptophan fluorescence and present the first real-time evidence of a GT-B enzyme undergoing a substrate binding-induced transition from an open to closed state prior to catalysis.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Glicosiltransferases/química , Cristalização , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Cinética , Ligação Proteica , Conformação Proteica , Especificidade por Substrato
17.
Antimicrob Agents Chemother ; 56(5): 2553-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22290956

RESUMO

Cryptococcus gattii is the main pathogen of cryptococcosis in healthy patients and is treated mainly with fluconazole and amphotericin B. The combination of these drugs has been questioned because the mechanisms of action could lead to a theoretical antagonistic interaction. We evaluated distinct parameters involved in the in vitro combination of fluconazole and amphotericin B against Cryptococcus gattii. Fourteen strains of C. gattii were used for the determination of MIC, fractional inhibitory concentration, time-kill curve, and postantifungal effect (PAFE). Ergosterol quantification was performed to evaluate the influence of ergosterol content on the interaction between these antifungals. Interaction between the drugs varied from synergistic to antagonistic depending on the strain and concentration tested. Increasing fluconazole levels were correlated with an antagonistic interaction. A total of 48 h was necessary for reducing the fungal viability in the presence of fluconazole, while 12 h were required for amphotericin B. When these antifungals were tested in combination, fluconazole impaired the amphotericin B activity. The ergosterol content decreased with the increase of fluconazole levels and it was correlated with the lower activity of amphotericin B. The PAFE found varied from 1 to 4 h for fluconazole and from 1 to 3 h for amphotericin B. The interaction of fluconazole and amphotericin B was concentration-dependent and special attention should be directed when these drugs are used in combination against C. gattii.


Assuntos
Anfotericina B/farmacologia , Antifúngicos/farmacologia , Cryptococcus gattii/efeitos dos fármacos , Fluconazol/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Cryptococcus gattii/crescimento & desenvolvimento , Meios de Cultura , Relação Dose-Resposta a Droga , Antagonismo de Drogas , Sinergismo Farmacológico , Ergosterol/metabolismo , Humanos , Testes de Sensibilidade Microbiana , Especificidade da Espécie , Espectrofotometria
18.
Mycopathologia ; 174(5-6): 489-97, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22936103

RESUMO

A total of 233 specimens obtained from suspected cases of dermatomycosis from 189 patients were examined for causative fungi from December 2009 to May 2010 in a tertiary care hospital in the city of Belo Horizonte, state of Minas Gerais, southeastern Brazil. Yeast and fungal isolates obtained from specimens were regarded as conclusive diagnosis of mycoses in 82 cases (35.19 %), with the exception of two patients with pityriasis versicolor (2.4 %), in which the diagnosis was made only by direct examination plus clinical diagnostics of individuals. Forty-four subjects (23.28 %) were infected in more than one anatomical site. There was a higher occurrence on female patients (146, 77.2 %) than male (43, 22.8 %). Most of the infected patients were aged between 41 and 70 years (68.29 %). There were no statistically significant differences between occurrence of fungal infection and gender, presence of secondary disease and contact with animals. The largest number of examined material occurred in samples from toenails, which resulted in 50 % of positive cultures. Candida species were the most frequent group causing dermatomycosis in many anatomical sites, mainly in toenails and fingernails. Candida parapsilosis was the most representative (40.24 %) among all agents causing dermatomycosis of toenails and fingernails, followed by Candida tropicalis (20.73 %) and Trichophyton rubrum (10.98 %). Among the dermatophytes, Trichophyton genus represented over 80 % of the isolates, with T. rubrum representing 64.29 %, T. interdigitale (T. mentagrophytes) (21.43 %) and Microsporum gypseum (14.29 %).


Assuntos
Dermatomicoses/epidemiologia , Dermatomicoses/microbiologia , Fungos/isolamento & purificação , Adulto , Idoso , Brasil/epidemiologia , Feminino , Fungos/classificação , Fungos/genética , Humanos , Masculino , Pessoa de Meia-Idade , Técnicas de Tipagem Micológica , Prevalência , Atenção Terciária à Saúde/estatística & dados numéricos
19.
J Sch Health ; 92(5): 452-460, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35195293

RESUMO

BACKGROUND: Receiving treatment for behavioral health disorders remains problematic due to profound provider shortages. Telebehavioral health services are effective for providing quality care, but research literature on these services in schools is limited. METHODS: Data were collected during Fall 2019 and Spring 2020 semesters on all students receiving telebehavioral health services from 15 school-based telehealth programs across the U.S. RESULTS: From Fall 2019 to Spring 2020, 62 schools providing services during both periods increased the number of students served from 396 to 745, increased the average number of encounters per student from 2.4 to 4.1, increased the percentage of encounters delivered by clinical social workers, mental health counselors, and clinical psychologists (all p < .001), and increased the use of individual counseling, family counseling, and group counseling (all p < .001). Schools that initiated the service in Spring 2020 (n = 25) averaged 6.5 encounters for the 301 students receiving services, delivered mostly by clinical social workers or professional counselors, using individual counseling. CONCLUSION: Overall, data indicate programs significantly increased both behavioral services provided to their ongoing schools and increased the number of schools served. Undoubtedly telebehavioral health care delivery provided a swift and necessary response to the challenges posed by the growing pandemic threat.


Assuntos
COVID-19 , COVID-19/epidemiologia , Humanos , Pandemias , Saúde Pública , Serviços de Saúde Escolar , Instituições Acadêmicas
20.
Sci Rep ; 12(1): 7302, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508636

RESUMO

A clinically relevant inhibitor for Heptosyltransferase I (HepI) has been sought after for many years because of its critical role in the biosynthesis of lipopolysaccharides on bacterial cell surfaces. While many labs have discovered or designed novel small molecule inhibitors, these compounds lacked the bioavailability and potency necessary for therapeutic use. Extensive characterization of the HepI protein has provided valuable insight into the dynamic motions necessary for catalysis that could be targeted for inhibition. Structural inspection of Kdo2-lipid A suggested aminoglycoside antibiotics as potential inhibitors for HepI. Multiple aminoglycosides have been experimentally validated to be first-in-class nanomolar inhibitors of HepI, with the best inhibitor demonstrating a Ki of 600 ± 90 nM. Detailed kinetic analyses were performed to determine the mechanism of inhibition while circular dichroism spectroscopy, intrinsic tryptophan fluorescence, docking, and molecular dynamics simulations were used to corroborate kinetic experimental findings. While aminoglycosides have long been described as potent antibiotics targeting bacterial ribosomes' protein synthesis leading to disruption of the stability of bacterial cell membranes, more recently researchers have shown that they only modestly impact protein production. Our research suggests an alternative and novel mechanism of action of aminoglycosides in the inhibition of HepI, which directly leads to modification of LPS production in vivo. This finding could change our understanding of how aminoglycoside antibiotics function, with interruption of LPS biosynthesis being an additional and important mechanism of aminoglycoside action. Further research to discern the microbiological impact of aminoglycosides on cells is warranted, as inhibition of the ribosome may not be the sole and primary mechanism of action. The inhibition of HepI by aminoglycosides may dramatically alter strategies to modify the structure of aminoglycosides to improve the efficacy in fighting bacterial infections.


Assuntos
Aminoglicosídeos , Lipopolissacarídeos , Aminoglicosídeos/química , Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Glicosiltransferases/metabolismo , Lipopolissacarídeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA