Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Biomed Inform ; 117: 103733, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33737205

RESUMO

The context of medical conditions is an important feature to consider when processing clinical narratives. NegEx and its extension ConText became the most well-known rule-based systems that allow determining whether a medical condition is negated, historical or experienced by someone other than the patient in English clinical text. In this paper, we present a French adaptation and enrichment of FastContext which is the most recent, n-trie engine-based implementation of the ConText algorithm. We compiled an extensive list of French lexical cues by automatic and manual translation and enrichment. To evaluate French FastContext, we manually annotated the context of medical conditions present in two types of clinical narratives: (i)death certificates and (ii)electronic health records. Results show good performance across different context values on both types of clinical notes (on average 0.93 and 0.86 F1, respectively). Furthermore, French FastContext outperforms previously reported French systems for negation detection when compared on the same datasets and it is the first implementation of contextual temporality and experiencer identification reported for French. Finally, French FastContext has been implemented within the SIFR Annotator: a publicly accessible Web service to annotate French biomedical text data (http://bioportal.lirmm.fr/annotator). To our knowledge, this is the first implementation of a Web-based ConText-like system in a publicly accessible platform allowing non-natural-language-processing experts to both annotate and contextualize medical conditions in clinical notes.


Assuntos
Idioma , Processamento de Linguagem Natural , Algoritmos , Registros Eletrônicos de Saúde , Humanos
2.
BMC Bioinformatics ; 20(Suppl 4): 139, 2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-30999867

RESUMO

BACKGROUND: Pharmacogenomics (PGx) studies how genomic variations impact variations in drug response phenotypes. Knowledge in pharmacogenomics is typically composed of units that have the form of ternary relationships gene variant - drug - adverse event. Such a relationship states that an adverse event may occur for patients having the specified gene variant and being exposed to the specified drug. State-of-the-art knowledge in PGx is mainly available in reference databases such as PharmGKB and reported in scientific biomedical literature. But, PGx knowledge can also be discovered from clinical data, such as Electronic Health Records (EHRs), and in this case, may either correspond to new knowledge or confirm state-of-the-art knowledge that lacks "clinical counterpart" or validation. For this reason, there is a need for automatic comparison of knowledge units from distinct sources. RESULTS: In this article, we propose an approach, based on Semantic Web technologies, to represent and compare PGx knowledge units. To this end, we developed PGxO, a simple ontology that represents PGx knowledge units and their components. Combined with PROV-O, an ontology developed by the W3C to represent provenance information, PGxO enables encoding and associating provenance information to PGx relationships. Additionally, we introduce a set of rules to reconcile PGx knowledge, i.e. to identify when two relationships, potentially expressed using different vocabularies and levels of granularity, refer to the same, or to different knowledge units. We evaluated our ontology and rules by populating PGxO with knowledge units extracted from PharmGKB (2701), the literature (65,720) and from discoveries reported in EHR analysis studies (only 10, manually extracted); and by testing their similarity. We called PGxLOD (PGx Linked Open Data) the resulting knowledge base that represents and reconciles knowledge units of those various origins. CONCLUSIONS: The proposed ontology and reconciliation rules constitute a first step toward a more complete framework for knowledge comparison in PGx. In this direction, the experimental instantiation of PGxO, named PGxLOD, illustrates the ability and difficulties of reconciling various existing knowledge sources.


Assuntos
Bases de Conhecimento , Farmacogenética , Mineração de Dados , Bases de Dados Factuais , Registros Eletrônicos de Saúde , Humanos , Bancos de Tecidos
3.
Bioinformatics ; 34(11): 1962-1965, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29846492

RESUMO

Summary: Second use of clinical data commonly involves annotating biomedical text with terminologies and ontologies. The National Center for Biomedical Ontology Annotator is a frequently used annotation service, originally designed for biomedical data, but not very suitable for clinical text annotation. In order to add new functionalities to the NCBO Annotator without hosting or modifying the original Web service, we have designed a proxy architecture that enables seamless extensions by pre-processing of the input text and parameters, and post processing of the annotations. We have then implemented enhanced functionalities for annotating and indexing free text such as: scoring, detection of context (negation, experiencer, temporality), new output formats and coarse-grained concept recognition (with UMLS Semantic Groups). In this paper, we present the NCBO Annotator+, a Web service which incorporates these new functionalities as well as a small set of evaluation results for concept recognition and clinical context detection on two standard evaluation tasks (Clef eHealth 2017, SemEval 2014). Availability and implementation: The Annotator+ has been successfully integrated into the SIFR BioPortal platform-an implementation of NCBO BioPortal for French biomedical terminologies and ontologies-to annotate English text. A Web user interface is available for testing and ontology selection (http://bioportal.lirmm.fr/ncbo_annotatorplus); however the Annotator+ is meant to be used through the Web service application programming interface (http://services.bioportal.lirmm.fr/ncbo_annotatorplus). The code is openly available, and we also provide a Docker packaging to enable easy local deployment to process sensitive (e.g. clinical) data in-house (https://github.com/sifrproject). Contact: andon.tchechmedjiev@lirmm.fr. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Ontologias Biológicas , Armazenamento e Recuperação da Informação/métodos , Software , Humanos
4.
BMC Bioinformatics ; 19(1): 405, 2018 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-30400805

RESUMO

BACKGROUND: Despite a wide adoption of English in science, a significant amount of biomedical data are produced in other languages, such as French. Yet a majority of natural language processing or semantic tools as well as domain terminologies or ontologies are only available in English, and cannot be readily applied to other languages, due to fundamental linguistic differences. However, semantic resources are required to design semantic indexes and transform biomedical (text)data into knowledge for better information mining and retrieval. RESULTS: We present the SIFR Annotator ( http://bioportal.lirmm.fr/annotator ), a publicly accessible ontology-based annotation web service to process biomedical text data in French. The service, developed during the Semantic Indexing of French Biomedical Data Resources (2013-2019) project is included in the SIFR BioPortal, an open platform to host French biomedical ontologies and terminologies based on the technology developed by the US National Center for Biomedical Ontology. The portal facilitates use and fostering of ontologies by offering a set of services -search, mappings, metadata, versioning, visualization, recommendation- including for annotation purposes. We introduce the adaptations and improvements made in applying the technology to French as well as a number of language independent additional features -implemented by means of a proxy architecture- in particular annotation scoring and clinical context detection. We evaluate the performance of the SIFR Annotator on different biomedical data, using available French corpora -Quaero (titles from French MEDLINE abstracts and EMEA drug labels) and CépiDC (ICD-10 coding of death certificates)- and discuss our results with respect to the CLEF eHealth information extraction tasks. CONCLUSIONS: We show the web service performs comparably to other knowledge-based annotation approaches in recognizing entities in biomedical text and reach state-of-the-art levels in clinical context detection (negation, experiencer, temporality). Additionally, the SIFR Annotator is the first openly web accessible tool to annotate and contextualize French biomedical text with ontology concepts leveraging a dictionary currently made of 28 terminologies and ontologies and 333 K concepts. The code is openly available, and we also provide a Docker packaging for easy local deployment to process sensitive (e.g., clinical) data in-house ( https://github.com/sifrproject ).


Assuntos
Indexação e Redação de Resumos , Ontologias Biológicas , Análise de Dados , Registros de Saúde Pessoal , Informática Médica , Processamento de Linguagem Natural , Semântica , França , Perfilação da Expressão Gênica , Humanos , Armazenamento e Recuperação da Informação , MEDLINE
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA