Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38396721

RESUMO

The human Vitamin K Epoxide Reductase Complex (hVKORC1), a key enzyme transforming vitamin K into the form necessary for blood clotting, requires for its activation the reducing equivalents delivered by its redox partner through thiol-disulfide exchange reactions. The luminal loop (L-loop) is the principal mediator of hVKORC1 activation, and it is a region frequently harbouring numerous missense mutations. Four L-loop hVKORC1 mutants, suggested in vitro as either resistant (A41S, H68Y) or completely inactive (S52W, W59R), were studied in the oxidised state by numerical approaches (in silico). The DYNASOME and POCKETOME of each mutant were characterised and compared to the native protein, recently described as a modular protein composed of the structurally stable transmembrane domain (TMD) and the intrinsically disordered L-loop, exhibiting quasi-independent dynamics. The DYNASOME of mutants revealed that L-loop missense point mutations impact not only its folding and dynamics, but also those of the TMD, highlighting a strong mutation-specific interdependence between these domains. Another consequence of the mutation-induced effects manifests in the global changes (geometric, topological, and probabilistic) of the newly detected cryptic pockets and the alternation of the recognition properties of the L-loop with its redox protein. Based on our results, we postulate that (i) intra-protein allosteric regulation and (ii) the inherent allosteric regulation and cryptic pockets of each mutant depend on its DYNASOME; and (iii) the recognition of the redox protein by hVKORC1 (INTERACTOME) depend on their DYNASOME. This multifaceted description of proteins produces "omics" data sets, crucial for understanding the physiological processes of proteins and the pathologies caused by alteration of the protein properties at various "omics" levels. Additionally, such characterisation opens novel perspectives for the development of "allo-network drugs" essential for the treatment of blood disorders.


Assuntos
Mutação de Sentido Incorreto , Vitamina K Epóxido Redutases , Humanos , Mutação , Oxirredução , Vitamina K/metabolismo , Vitamina K Epóxido Redutases/genética , Vitamina K Epóxido Redutases/metabolismo
2.
Int J Mol Sci ; 25(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38673722

RESUMO

The human Vitamin K Epoxide Reductase Complex (hVKORC1), a key enzyme that converts vitamin K into the form necessary for blood clotting, requires for its activation the reducing equivalents supplied by its redox partner through thiol-disulphide exchange reactions. The functionally related molecular complexes assembled during this process have never been described, except for a proposed de novo model of a 'precursor' complex of hVKORC1 associated with protein disulphide isomerase (PDI). Using numerical approaches (in silico modelling and molecular dynamics simulation), we generated alternative 3D models for each molecular complex bonded either covalently or non-covalently. These models differ in the orientation of the PDI relative to hVKORC1 and in the cysteine residue involved in forming protein-protein disulphide bonds. Based on a comparative analysis of these models' shape, folding, and conformational dynamics, the most probable putative complexes, mimicking the 'precursor', 'intermediate', and 'successor' states, were suggested. In addition, we propose using these complexes to develop the 'allo-network drugs' necessary for treating blood diseases.


Assuntos
Simulação de Dinâmica Molecular , Isomerases de Dissulfetos de Proteínas , Vitamina K Epóxido Redutases , Isomerases de Dissulfetos de Proteínas/metabolismo , Isomerases de Dissulfetos de Proteínas/química , Vitamina K Epóxido Redutases/química , Vitamina K Epóxido Redutases/metabolismo , Vitamina K Epóxido Redutases/genética , Humanos , Dissulfetos/química , Dissulfetos/metabolismo , Compostos de Sulfidrila/química , Compostos de Sulfidrila/metabolismo , Modelos Moleculares , Conformação Proteica , Oxirredução , Ligação Proteica
3.
Int J Mol Sci ; 23(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36361689

RESUMO

Receptor tyrosine kinases (RTKs) are modular membrane proteins possessing both well-folded and disordered domains acting together in ligand-induced activation and regulation of post-transduction processes that tightly couple extracellular and cytoplasmic events. They ensure the fine-turning control of signal transmission by signal transduction. Deregulation of RTK KIT, including overexpression and gain of function mutations, has been detected in several human cancers. In this paper, we analysed by in silico techniques the Kinase Insert Domain (KID), a key platform of KIT transduction processes, as a generic macrocycle (KIDGC), a cleaved isolated polypeptide (KIDC), and a natively fused TKD domain (KIDD). We assumed that these KID species have similar structural and dynamic characteristics indicating the intrinsically disordered nature of this domain. This finding means that both polypeptides, cyclic KIDGC and linear KIDC, are valid models of KID integrated into the RTK KIT and will be helpful for further computational and empirical studies of post-transduction KIT events.


Assuntos
Fosfotransferases , Receptores Proteína Tirosina Quinases , Humanos , Receptores Proteína Tirosina Quinases/metabolismo , Fosfotransferases/metabolismo , Transdução de Sinais , Ligantes , Células Clonais/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo
4.
Int J Mol Sci ; 23(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35163518

RESUMO

RTK KIT regulates a variety of crucial cellular processes via its cytoplasmic domain (CD), which is composed of the tyrosine kinase domain, crowned by the highly flexible domains-the juxtamembrane region, kinase insertion domain, and C-tail, which are key recruitment regions for downstream signalling proteins. To prepare a structural basis for the characterization of the interactions of KIT with its signalling proteins (KIT INTERACTOME), we generated the 3D model of the full-length CD attached to the transmembrane helix. This generic model of KIT in inactive state was studied by molecular dynamics simulation under conditions mimicking the natural environment of KIT. With the accurate atomistic description of the multidomain KIT dynamics, we explained its intrinsic (intra-domain) and extrinsic (inter-domain) disorder and represented the conformational assemble of KIT through free energy landscapes. Strongly coupled movements within each domain and between distant domains of KIT prove the functional interdependence of these regions, described as allosteric regulation, a phenomenon widely observed in many proteins. We suggested that KIT, in its inactive state, encodes all properties of the active protein and its post-transduction events.


Assuntos
Proteínas Proto-Oncogênicas c-kit/química , Proteínas Proto-Oncogênicas c-kit/metabolismo , Domínio Catalítico , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Dobramento de Proteína , Mapas de Interação de Proteínas
5.
Int J Mol Sci ; 23(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35409257

RESUMO

Human vitamin K epoxide reductase (hVKORC1) enzymatic activity requires an initial activation by a specific redox protein, a less studied step in the hVKORC1 vital cycle. Significant steric conditions must be met by enzymes, being that to adapt their configurations is mandatory for hVKORC1 activation. We studied, by molecular dynamics (MD) simulations, the folding and conformational plasticity of hVKORC1 in its inactive (fully oxidised) state using available structures, crystallographic and from de novo modelling. According to the obtained results, hVKORC1 is a modular protein composed of the stable transmembrane domain (TMD) and intrinsically disordered luminal (L) loop, possessing the great plasticity/adaptability required to perform various steps of the activation process. The docking (HADDOCK) of Protein Disulfide Isomerase (PDI) onto different hVKORC1 conformations clearly indicated that the most interpretable solutions were found on the target closed L-loop form, a prevalent conformation of hVKORC1's oxidised state. We also suggest that the cleaved L-loop is an appropriate entity to study hVKORC1 recognition/activation by its redox protein. Additionally, the application of hVKORC1 (membrane protein) in aqueous solution is likely to prove to be very useful in practice in either in silico studies or in vitro experiments.


Assuntos
Simulação de Dinâmica Molecular , Isomerases de Dissulfetos de Proteínas , Humanos , Oxirredução , Isomerases de Dissulfetos de Proteínas/metabolismo , Domínios Proteicos , Vitamina K/metabolismo , Vitamina K Epóxido Redutases/química
6.
Int J Mol Sci ; 22(14)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34298994

RESUMO

The kinase insert domain (KID) of RTK KIT is the key recruitment region for downstream signalling proteins. KID, studied by molecular dynamics simulations as a cleaved polypeptide and as a native domain fused to KIT, showed intrinsic disorder represented by a set of heterogeneous conformations. The accurate atomistic models showed that the helical fold of KID is mainly sequence dependent. However, the reduced fold of the native KID suggests that its folding is allosterically controlled by the kinase domain. The tertiary structure of KID represents a compact array of highly variable α- and 310-helices linked by flexible loops playing a principal role in the conformational diversity. The helically folded KID retains a collapsed globule-like shape due to non-covalent interactions associated in a ternary hydrophobic core. The free energy landscapes constructed from first principles-the size, the measure of the average distance between the conformations, the amount of helices and the solvent-accessible surface area-describe the KID disorder through a collection of minima (wells), providing a direct evaluation of conformational ensembles. We found that the cleaved KID simulated with restricted N- and C-ends better reproduces the native KID than the isolated polypeptide. We suggest that a cyclic, generic KID would be best suited for future studies of KID f post-transduction effects.


Assuntos
Sequência de Aminoácidos/genética , Simulação de Dinâmica Molecular , Receptores Proteína Tirosina Quinases/química , Tirosina/química , Regulação Alostérica , Domínio Catalítico , Entropia , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Conformação Proteica , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Dobramento de Proteína , Receptores Proteína Tirosina Quinases/genética
7.
Int J Mol Sci ; 22(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466919

RESUMO

Redox (reduction-oxidation) reactions control many important biological processes in all organisms, both prokaryotes and eukaryotes. This reaction is usually accomplished by canonical disulphide-based pathways involving a donor enzyme that reduces the oxidised cysteine residues of a target protein, resulting in the cleavage of its disulphide bonds. Focusing on human vitamin K epoxide reductase (hVKORC1) as a target and on four redoxins (protein disulphide isomerase (PDI), endoplasmic reticulum oxidoreductase (ERp18), thioredoxin-related transmembrane protein 1 (Tmx1) and thioredoxin-related transmembrane protein 4 (Tmx4)) as the most probable reducers of VKORC1, a comparative in-silico analysis that concentrates on the similarity and divergence of redoxins in their sequence, secondary and tertiary structure, dynamics, intraprotein interactions and composition of the surface exposed to the target is provided. Similarly, hVKORC1 is analysed in its native state, where two pairs of cysteine residues are covalently linked, forming two disulphide bridges, as a target for Trx-fold proteins. Such analysis is used to derive the putative recognition/binding sites on each isolated protein, and PDI is suggested as the most probable hVKORC1 partner. By probing the alternative orientation of PDI with respect to hVKORC1, the functionally related noncovalent complex formed by hVKORC1 and PDI was found, which is proposed to be a first precursor to probe thiol-disulphide exchange reactions between PDI and hVKORC1.


Assuntos
Domínios Proteicos , Dobramento de Proteína , Tiorredoxinas/química , Vitamina K Epóxido Redutases/química , Algoritmos , Sequência de Aminoácidos , Sítios de Ligação , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Simulação de Dinâmica Molecular , Oxirredução , Proteína Dissulfeto Redutase (Glutationa)/química , Proteína Dissulfeto Redutase (Glutationa)/genética , Proteína Dissulfeto Redutase (Glutationa)/metabolismo , Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Homologia de Sequência de Aminoácidos , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Vitamina K Epóxido Redutases/genética , Vitamina K Epóxido Redutases/metabolismo
8.
Nature ; 514(7521): 242-6, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25156257

RESUMO

ß-Thalassaemia major (ß-TM) is an inherited haemoglobinopathy caused by a quantitative defect in the synthesis of ß-globin chains of haemoglobin, leading to the accumulation of free α-globin chains that form toxic aggregates. Despite extensive knowledge of the molecular defects causing ß-TM, little is known of the mechanisms responsible for the ineffective erythropoiesis observed in the condition, which is characterized by accelerated erythroid differentiation, maturation arrest and apoptosis at the polychromatophilic stage. We have previously demonstrated that normal human erythroid maturation requires a transient activation of caspase-3 at the later stages of maturation. Although erythroid transcription factor GATA-1, the master transcriptional factor of erythropoiesis, is a caspase-3 target, it is not cleaved during erythroid differentiation. We have shown that, in human erythroblasts, the chaperone heat shock protein70 (HSP70) is constitutively expressed and, at later stages of maturation, translocates into the nucleus and protects GATA-1 from caspase-3 cleavage. The primary role of this ubiquitous chaperone is to participate in the refolding of proteins denatured by cytoplasmic stress, thus preventing their aggregation. Here we show in vitro that during the maturation of human ß-TM erythroblasts, HSP70 interacts directly with free α-globin chains. As a consequence, HSP70 is sequestrated in the cytoplasm and GATA-1 is no longer protected, resulting in end-stage maturation arrest and apoptosis. Transduction of a nuclear-targeted HSP70 mutant or a caspase-3-uncleavable GATA-1 mutant restores terminal maturation of ß-TM erythroblasts, which may provide a rationale for new targeted therapies of ß-TM.


Assuntos
Eritroblastos/metabolismo , Eritropoese , Proteínas de Choque Térmico HSP70/metabolismo , alfa-Globinas/metabolismo , Talassemia beta/sangue , Talassemia beta/metabolismo , Apoptose , Medula Óssea/metabolismo , Caspase 3/metabolismo , Núcleo Celular/metabolismo , Sobrevivência Celular/genética , Células Cultivadas , Citoplasma/metabolismo , Ativação Enzimática , Eritroblastos/citologia , Eritroblastos/patologia , Eritropoese/genética , Fator de Transcrição GATA1/genética , Fator de Transcrição GATA1/metabolismo , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP70/genética , Humanos , Cinética , Terapia de Alvo Molecular , Ligação Proteica , Redobramento de Proteína , Talassemia beta/patologia
9.
J Med Genet ; 54(9): 607-612, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28592523

RESUMO

BACKGROUND: Sarcomas are rare mesenchymal malignancies whose pathogenesis is poorly understood; both environmental and genetic risk factors could contribute to their aetiology. METHODS AND RESULTS: We performed whole-exome sequencing (WES) in a familial aggregation of three individuals affected with soft-tissue sarcoma (STS) without TP53 mutation (Li-Fraumeni-like, LFL) and found a shared pathogenic mutation in CDKN2A tumour suppressor gene. We searched for individuals with sarcoma among 474 melanoma-prone families with a CDKN2A-/+ genotype and for CDKN2A mutations in 190 TP53-negative LFL families where the index case was a sarcoma. Including the initial family, eight independent sarcoma cases carried a germline mutation in the CDKN2A/p16INK4A gene. In five out of seven formalin-fixed paraffin-embedded sarcomas, heterozygosity was lost at germline CDKN2A mutations sites demonstrating complete loss of function. As sarcomas are rare in CDKN2A/p16INK4A carriers, we searched in constitutional WES of nine carriers for potential modifying rare variants and identified three in platelet-derived growth factor receptor (PDGFRA) gene. Molecular modelling showed that two never-described variants could impact the PDGFRA extracellular domain structure. CONCLUSION: Germline mutations in CDKN2A/P16INK4A, a gene known to predispose to hereditary melanoma, pancreatic cancer and tobacco-related cancers, account also for a subset of hereditary sarcoma. In addition, we identified PDGFRA as a candidate modifier gene.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor de Quinase Dependente de Ciclina p18/genética , Genes p16 , Mutação em Linhagem Germinativa , Sarcoma/genética , Neoplasias de Tecidos Moles/genética , Feminino , Determinismo Genético , Predisposição Genética para Doença , Heterozigoto , Humanos , Masculino , Linhagem , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Sequenciamento do Exoma
10.
PLoS Comput Biol ; 10(7): e1003749, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25079768

RESUMO

Receptor tyrosine kinase KIT controls many signal transduction pathways and represents a typical allosterically regulated protein. The mutation-induced deregulation of KIT activity impairs cellular physiological functions and causes serious human diseases. The impact of hotspots mutations (D816H/Y/N/V and V560G/D) localized in crucial regulatory segments, the juxtamembrane region (JMR) and the activation (A-) loop, on KIT internal dynamics was systematically studied by molecular dynamics simulations. The mutational outcomes predicted in silico were correlated with in vitro and in vivo activation rates and drug sensitivities of KIT mutants. The allosteric regulation of KIT in the native and mutated forms is described in terms of communication between the two remote segments, JMR and A-loop. A strong correlation between the communication profile and the structural and dynamical features of KIT in the native and mutated forms was established. Our results provide new insight on the determinants of receptor KIT constitutive activation by mutations and resistance of KIT mutants to inhibitors. Depiction of an intra-molecular component of the communication network constitutes a first step towards an integrated description of vast communication pathways established by KIT in physiopathological contexts.


Assuntos
Mutação/genética , Proteínas Proto-Oncogênicas c-kit/química , Proteínas Proto-Oncogênicas c-kit/genética , Regulação Alostérica/genética , Antineoplásicos/farmacologia , Citoplasma/química , Citoplasma/metabolismo , Humanos , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-kit/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-kit/metabolismo , Transdução de Sinais
11.
Haematologica ; 99(3): 417-29, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24598853

RESUMO

Chronic myeloid leukemia and systemic mastocytosis are myeloid neoplasms sharing a number of pathogenetic and clinical features. In both conditions, an aberrantly activated oncoprotein with tyrosine kinase activity, namely BCR-ABL1 in chronic myeloid leukemia, and mutant KIT, mostly KIT D816V, in systemic mastocytosis, is key to disease evolution. The appreciation of the role of such tyrosine kinases in these diseases has led to the development of improved therapies with tyrosine kinase-targeted inhibitors. However, most drugs, including new KIT D816V-blocking agents, have failed to achieve long-lasting remissions in advanced systemic mastocytosis, and there is a similar problem in chronic myeloid leukemia, where imatinib-resistant patients sometimes fail to achieve remission, even with second- or third-line BCR-ABL1 specific tyrosine kinase inhibitors. During disease progression, additional signaling pathways become activated in neoplastic cells, but most converge into major downstream networks. Among these, the AKT and STAT5 pathways appear most critical and may result in drug-resistant chronic myeloid leukemia and systemic mastocytosis. Inhibition of phosphorylation of these targets has proven their crucial role in disease-evolution in both malignancies. Together, these observations suggest that STAT5 and AKT are key drivers of oncogenesis in drug-resistant forms of the diseases, and that targeting STAT5 and AKT might be an interesting approach in these malignancies. The present article provides an overview of our current knowledge about the critical role of AKT and STAT5 in the pathophysiology of chronic myeloid leukemia and systemic mastocytosis and on their potential value as therapeutic targets in these neoplasms.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Mastocitose/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais , Animais , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Humanos , Janus Quinases/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/etiologia , Mastócitos/metabolismo , Mastócitos/patologia , Mastocitose/tratamento farmacológico , Mastocitose/etiologia , Terapia de Alvo Molecular , Mutação , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Fator de Transcrição STAT5/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos
12.
J Mol Recognit ; 26(9): 383-401, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23836466

RESUMO

HIV-1 IN is a pertinent target for the development of AIDS chemotherapy. The first IN-specific inhibitor approved for the treatment of HIV/AIDS, RAL, was designed to block the ST reaction. We characterized the structural and conformational features of RAL and its recognition by putative HIV-1 targets - the unbound IN, the vDNA, and the IN•vDNA complex - mimicking the IN states over the integration process. RAL binding to the targets was studied by performing an extensive sampling of the inhibitor conformational landscape and by using four different docking algorithms: Glide, Autodock, VINA, and SurFlex. The obtained data evidenced that: (i) a large binding pocket delineated by the active site and an extended loop in the unbound IN accommodates RAL in distinct conformational states all lacking specific interactions with the target; (ii) a well-defined cavity formed by the active site, the vDNA, and the shortened loop in the IN•vDNA complex provide a more optimized inhibitor binding site in which RAL chelates Mg(2+) cations; (iii) a specific recognition between RAL and the unpaired cytosine of the processed DNA is governed by a pair of strong H-bonds similar to those observed in DNA base pair G-C. The identified RAL pose at the cleaved vDNA shed light on a putative step of RAL inhibition mechanism. This modeling study indicates that the inhibition process may include as a first step RAL recognition by the processed vDNA bound to a transient intermediate IN state, and thus provides a potentially promising route to the design of IN inhibitors with improved affinity and selectivity.


Assuntos
Inibidores de Integrase de HIV/química , Integrase de HIV/química , HIV-1/enzimologia , Simulação de Dinâmica Molecular , Pirrolidinonas/química , Sítios de Ligação , Domínio Catalítico , Complexos de Coordenação/química , DNA Viral/química , Gases , HIV-1/genética , Magnésio/química , Manganês/química , Conformação de Ácido Nucleico , Potássio/química , Ligação Proteica , Estrutura Secundária de Proteína , Raltegravir Potássico , Soluções
13.
PLoS Comput Biol ; 8(8): e1002661, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22927810

RESUMO

A fundamental goal in cellular signaling is to understand allosteric communication, the process by which signals originated at one site in a protein propagate dependably to affect remote functional sites. Here, we describe the allosteric regulation of the receptor tyrosine kinase KIT. Our analysis evidenced that communication routes established between the activation loop (A-loop) and the distant juxtamembrane region (JMR) in the native protein were disrupted by the oncogenic mutation D816V positioned in the A-loop. In silico mutagenesis provided a plausible way of restoring the protein communication detected in the native KIT by introducing a counter-balancing second mutation D792E. The communication patterns observed in the native and mutated KIT correlate perfectly with the structural and dynamical features of these proteins. Particularly, a long-distance effect of the D816V mutation manifested as an important structural re-organization of the JMR in the oncogenic mutant was completely vanished in the double mutant D816V/D792E. This detailed characterization of the allosteric communication in the different forms of KIT, native and mutants, was performed by using a modular network representation composed of communication pathways and independent dynamic segments. Such representation permits to enrich a purely mechanistic interaction-based model of protein communication by the introduction of concerted local atomic fluctuations. This method, validated on KIT receptor, may guide a rational modulation of the physiopathological activities of other receptor tyrosine kinases.


Assuntos
Mutação , Proteínas Proto-Oncogênicas c-kit/metabolismo , Regulação Alostérica , Modelos Moleculares , Proteínas Proto-Oncogênicas c-kit/química , Proteínas Proto-Oncogênicas c-kit/genética
14.
PLoS Comput Biol ; 7(6): e1002068, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21698178

RESUMO

The type III receptor tyrosine kinase (RTK) KIT plays a crucial role in the transmission of cellular signals through phosphorylation events that are associated with a switching of the protein conformation between inactive and active states. D816V KIT mutation is associated with various pathologies including mastocytosis and cancers. D816V-mutated KIT is constitutively active, and resistant to treatment with the anti-cancer drug Imatinib. To elucidate the activating molecular mechanism of this mutation, we applied a multi-approach procedure combining molecular dynamics (MD) simulations, normal modes analysis (NMA) and binding site prediction. Multiple 50-ns MD simulations of wild-type KIT and its mutant D816V were recorded using the inactive auto-inhibited structure of the protein, characteristic of type III RTKs. Computed free energy differences enabled us to quantify the impact of D816V on protein stability in the inactive state. We evidenced a local structural alteration of the activation loop (A-loop) upon mutation, and a long-range structural re-organization of the juxta-membrane region (JMR) followed by a weakening of the interaction network with the kinase domain. A thorough normal mode analysis of several MD conformations led to a plausible molecular rationale to propose that JMR is able to depart its auto-inhibitory position more easily in the mutant than in wild-type KIT and is thus able to promote kinase mutant dimerization without the need for extra-cellular ligand binding. Pocket detection at the surface of NMA-displaced conformations finally revealed that detachment of JMR from the kinase domain in the mutant was sufficient to open an access to the catalytic and substrate binding sites.


Assuntos
Simulação de Dinâmica Molecular , Mutação , Proteínas Proto-Oncogênicas c-kit/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Benzamidas , Domínio Catalítico , Dimerização , Resistencia a Medicamentos Antineoplásicos , Humanos , Mesilato de Imatinib , Piperazinas/química , Piperazinas/farmacologia , Análise de Componente Principal , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Pirimidinas/química , Pirimidinas/farmacologia , Termodinâmica
15.
Bioorg Med Chem ; 19(16): 5000-5, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21767953

RESUMO

While searching for new HIV integrase inhibitors we discovered that some ethyl malonate amides (EMA) are active against this enzyme. Surprisingly, the main function can only very rarely be found among the reported drug candidates. We synthesised a series of compounds in order to establish and analyse the structure-activity relationship. The similarity to the important classes of HIV integrase inhibitors as well as the synthetic availability of the different targets including this pharmacophore makes EMA compounds an interesting object of investigations.


Assuntos
Amidas/síntese química , Antivirais/síntese química , Inibidores de Integrase de HIV/síntese química , Integrase de HIV/efeitos dos fármacos , HIV-1/efeitos dos fármacos , Cetoácidos/síntese química , Malonatos/síntese química , Amidas/química , Antivirais/química , Antivirais/farmacologia , Ácidos Carboxílicos/síntese química , Ácidos Carboxílicos/química , Ácidos Carboxílicos/farmacologia , Mineração de Dados , Desenho de Fármacos , Integrase de HIV/análise , Integrase de HIV/metabolismo , Inibidores de Integrase de HIV/química , Inibidores de Integrase de HIV/farmacologia , HIV-1/enzimologia , Humanos , Cetoácidos/química , Malonatos/química , Malonatos/farmacologia , Modelos Moleculares , Estrutura Molecular , Terapia de Alvo Molecular , Quinolinas/síntese química , Quinolinas/química , Quinolinas/farmacologia , Relação Estrutura-Atividade
16.
Nucleic Acids Res ; 37(4): 1193-201, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19129221

RESUMO

Raltegravir (MK-0518) is the first integrase (IN) inhibitor to be approved by the US FDA and is currently used in clinical treatment of viruses resistant to other antiretroviral compounds. Virological failure of Raltegravir treatment is associated with mutations in the IN gene following two main distinct genetic pathways involving either the N155 or Q148 residue. Importantly, in most cases, an additional mutation at the position G140 is associated with the Q148 pathway. Here, we investigated the viral DNA kinetics for mutants identified in Raltegravir-resistant patients. We found that (i) integration is impaired for Q148H when compared with the wild-type, G140S and G140S/Q148H mutants; and (ii) the N155H and G140S mutations confer lower levels of resistance than the Q148H mutation. We also characterized the corresponding recombinant INs properties. Enzymatic performances closely parallel ex vivo studies. The Q148H mutation 'freezes' IN into a catalytically inactive state. By contrast, the conformational transition converting the inactive form into an active form is rescued by the G140S/Q148H double mutation. In conclusion, the Q148H mutation is responsible for resistance to Raltegravir whereas the G140S mutation increases viral fitness in the G140S/Q148H context. Altogether, these results account for the predominance of G140S/Q148H mutants in clinical trials using Raltegravir.


Assuntos
Inibidores de Integrase de HIV/uso terapêutico , Integrase de HIV/genética , Mutação Puntual , Pirrolidinonas/uso terapêutico , Substituição de Aminoácidos , Catálise , Linhagem Celular , DNA Viral/biossíntese , Farmacorresistência Viral/genética , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Integrase de HIV/metabolismo , HIV-1/genética , HIV-1/fisiologia , Humanos , Raltegravir Potássico , Replicação Viral
17.
Drug Resist Updat ; 13(4-5): 139-50, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20570551

RESUMO

Strand-transfer inhibitors, of which raltegravir, elvitegravir and S/GSK1349572, is a new class of antiretrovirals that inhibit HIV integrase-catalyzed insertion of the HIV-1 genome into cell chromosomes. The results of clinical trials were very encouraging regarding their viral efficiency and tolerance. However resistance mutations were identified in patients failing to respond to treatment with these inhibitors, involving primary mutations as well as numerous secondary mutations. This review focuses on recent advanced computational studies that have highlighted the contribution of those residues subject to primary mutations and the role of conformational flexibility of the enzyme in binding to strand-transfer inhibitors.


Assuntos
Farmacorresistência Viral/genética , Infecções por HIV/tratamento farmacológico , Inibidores de Integrase de HIV/farmacologia , Integrase de HIV/química , Integrase de HIV/metabolismo , HIV-1/efeitos dos fármacos , DNA Viral/metabolismo , Infecções por HIV/genética , Infecções por HIV/virologia , Integrase de HIV/genética , Inibidores de Integrase de HIV/metabolismo , Inibidores de Integrase de HIV/uso terapêutico , HIV-1/enzimologia , HIV-1/genética , Humanos , Modelos Moleculares , Mutação , Conformação Proteica , Multimerização Proteica
18.
Antimicrob Agents Chemother ; 54(1): 491-501, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19901095

RESUMO

Integrase (IN), the HIV-1 enzyme responsible for the integration of the viral genome into the chromosomes of infected cells, is the target of the recently approved antiviral raltegravir (RAL). Despite this drug's activity against viruses resistant to other antiretrovirals, failures of raltegravir therapy were observed, in association with the emergence of resistance due to mutations in the integrase coding region. Two pathways involving primary mutations on residues N155 and Q148 have been characterized. It was suggested that mutations at residue Y143 might constitute a third primary pathway for resistance. The aims of this study were to investigate the susceptibility of HIV-1 Y143R/C mutants to raltegravir and to determine the effects of these mutations on the IN-mediated reactions. Our observations demonstrate that Y143R/C mutants are strongly impaired for both of these activities in vitro. However, Y143R/C activity can be kinetically restored, thereby reproducing the effect of the secondary G140S mutation that rescues the defect associated with the Q148R/H mutants. A molecular modeling study confirmed that Y143R/C mutations play a role similar to that determined for Q148R/H mutations. In the viral replicative context, this defect leads to a partial block of integration responsible for a weak replicative capacity. Nevertheless, the Y143 mutant presented a high level of resistance to raltegravir. Furthermore, the 50% effective concentration (EC(50)) determined for Y143R/C mutants was significantly higher than that obtained with G140S/Q148R mutants. Altogether our results not only show that the mutation at position Y143 is one of the mechanisms conferring resistance to RAL but also explain the delayed emergence of this mutation.


Assuntos
Farmacorresistência Viral/genética , Infecções por HIV/tratamento farmacológico , Inibidores de Integrase de HIV/farmacologia , Inibidores de Integrase de HIV/uso terapêutico , Integrase de HIV/genética , HIV-1/efeitos dos fármacos , HIV-1/genética , Mutação/genética , Pirrolidinonas/farmacologia , Pirrolidinonas/uso terapêutico , Anisotropia , Linhagem Celular , DNA Viral/genética , DNA Viral/isolamento & purificação , Infecções por HIV/virologia , HIV-1/patogenicidade , Células HeLa , Humanos , Modelos Moleculares , Mutação/fisiologia , Raltegravir Potássico , Estudos Retrospectivos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Sci Rep ; 10(1): 5401, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32214210

RESUMO

Receptor tyrosine kinases (RTKs) are key regulators of normal cellular processes and have a critical role in the development and progression of many diseases. RTK ligand-induced stimulation leads to activation of the cytoplasmic kinase domain that controls the intracellular signalling. Although the kinase domain of RTKs has been extensively studied using X-ray analysis, the kinase insert domain (KID) and the C-terminal are partially or fully missing in all reported structures. We communicate the first structural model of the full-length RTK KIT cytoplasmic domain, a crucial target for cancer therapy. This model was achieved by integration of ab initio KID and C-terminal probe models into an X-ray structure, and by their further exploration through molecular dynamics (MD) simulation. An extended (2-µs) MD simulation of the proper model provided insight into the structure and conformational dynamics of the full-length cytoplasmic domain of KIT, which can be exploited in the description of the KIT transduction processes.


Assuntos
Domínio Catalítico/fisiologia , Citoplasma/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Humanos , Simulação de Dinâmica Molecular , Transdução de Sinais/fisiologia
20.
Antivir Ther ; 14(1): 123-9, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19320246

RESUMO

BACKGROUND: HIV type-1 (HIV-1) integrase (IN) inhibitor resistance is the consequence of mutations that are selected in the viral IN gene targeted by antiretroviral drugs, such as raltegravir (RAL) and elvitegravir (EVG). The genetic barrier, defined as the number of viral mutations required to overcome the drug-selective pressure, is one of the important factors in the development of drug resistance. The genetic barrier for IN inhibitor resistance was compared between HIV-1 subtype B and HIV-1 subtype CRF02_AG, which is highly prevalent in West Africa and becoming more frequent in developed countries. METHODS: IN nucleotide sequences from 73 HIV-1 subtype B and 77 HIV-1 subtype CRF02_AG antiretroviral-naive patients were examined at 19 IN amino acid positions implicated in RAL and EVG resistance. RESULTS: The majority (14/19) of the studied positions showed a high degree of conservation of the predominant codon sequences leading to a similar genetic barrier between subtypes B and CRF02_AG. Nevertheless, at positions 140 and 151, the variability between subtypes affected the genetic barrier for the mutations G140C, G140S and V1511 with a higher genetic barrier being calculated for subtype CRF02_AG. CONCLUSIONS: The major IN mutations E92Q, Q148K/R/H, N155H and E157Q (implicated in the resistance of IN inhibitors RAL and EVG) are highly conserved between subtypes B and CRF02_AG and display a similar genetic barrier. However, subtype CRFO2_AG showed a higher genetic barrier to acquire mutations 6140S, 6140C and V1511 as compared with subtype B, which could play a role in the resistance to RAL and/or EV6.


Assuntos
DNA Viral/genética , Farmacorresistência Viral/genética , Infecções por HIV/genética , Infecções por HIV/virologia , Integrase de HIV/genética , HIV-1/genética , Mutação , Farmacorresistência Viral/efeitos dos fármacos , Variação Genética , Infecções por HIV/tratamento farmacológico , Integrase de HIV/efeitos dos fármacos , Inibidores de Integrase de HIV/uso terapêutico , HIV-1/efeitos dos fármacos , Humanos , Pirrolidinonas/uso terapêutico , Quinolonas/uso terapêutico , Raltegravir Potássico , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA