Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Drug Metab Dispos ; 47(7): 715-723, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31048454

RESUMO

Although overexpression of multiple ATP-binding cassette transporters has been reported in clinical samples, few studies have examined how coexpression of multiple transporters affected resistance to chemotherapeutic drugs. We therefore examined how coexpression of ABCB1 (P-glycoprotein) and ABCG2 contributes to drug resistance in a cell line model. HEK293 cells were transfected with vector-encoding full-length ABCB1, ABCG2, or a bicistronic vector containing both genes, each under the control of a separate promoter. Cells transfected with both transporters (B1/G2 cells) demonstrated high levels of both transporters, and uptake of both the ABCB1-specific substrate rhodamine 123 and the ABCG2-specific substrate pheophorbide a was reduced when examined by flow cytometry. B1/G2 cells were also cross-resistant to the ABCB1 substrate doxorubicin, the ABCG2 substrate topotecan, as well as mitoxantrone and the cell cycle checkpoint kinase 1 inhibitor prexasertib, both of which were found to be substrates of both ABCB1 and ABCG2. When B1/G2 cells were incubated with both rhodamine 123 and pheophorbide a, transport of both compounds was observed, suggesting that ABCB1 and ABCG2, when coexpressed, can function independently to transport substrates. ABCB1 and ABCG2 also functioned additively to transport the common fluorescent substrates mitoxantrone and BODIPY-prazosin, as it was necessary to inhibit both transporters to prevent efflux from B1/G2 cells. ABCG2 expression was also found to decrease the efficacy of the ABCB1 inhibitor tariquidar in B1/G2 cells. Thus, ABCB1 and ABCG2 can independently and additively confer resistance to substrates, underscoring the need to inhibit multiple transporters when they are coexpressed.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Neoplasias/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Antineoplásicos/farmacologia , Transporte Biológico , Sobrevivência Celular/efeitos dos fármacos , Células HEK293 , Humanos , Modelos Biológicos , Proteínas de Neoplasias/genética , Quinolinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA