Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Ann Surg ; 274(3): 473-480, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34238812

RESUMO

OBJECTIVE: Pig-to-primate renal xenotransplantation is plagued by early antibody-mediated graft loss which precludes clinical application of renal xenotransplantation. We evaluated whether temporary complement inhibition with anti-C5 antibody Tesidolumab could minimize the impact of early antibody-mediated rejection in rhesus monkeys receiving pig kidneys receiving costimulatory blockade-based immunosuppression. METHODS: Double (Gal and Sda) and triple xenoantigen (Gal, Sda, and SLA I) pigs were created using CRISPR/Cas. Kidneys from DKO and TKO pigs were transplanted into rhesus monkeys that had the least reactive crossmatches. Recipients received anti-C5 antibody weekly for 70 days, and T cell depletion, anti-CD154, mycophenolic acid, and steroids as baseline immunosuppression (n = 7). Control recipients did not receive anti-C5 therapy (n = 10). RESULTS: Temporary anti-C5 therapy reduced early graft loss secondary to antibody-mediated rejection and improved graft survival (P < 0.01). Deleting class I MHC (SLA I) in donor pigs did not ameliorate early antibody-mediated rejection (table). Anti-C5 therapy did not allow for the use of tacrolimus instead of anti-CD154 (table), prolonging survival to a maximum of 62 days. CONCLUSION: Inhibition of the C5 complement subunit prolongs renal xenotransplant survival in a pig to non-human primate model.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais/farmacologia , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/prevenção & controle , Imunossupressores/farmacologia , Transplante de Rim , Transplante Heterólogo , Animais , Animais Geneticamente Modificados , Antibioticoprofilaxia , Tolerância Imunológica , Macaca mulatta , Modelos Animais , Rituximab/farmacologia , Suínos , Tacrolimo/farmacologia
2.
Am J Transplant ; 19(8): 2174-2185, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30821922

RESUMO

The shortage of available organs remains the greatest barrier to expanding access to transplant. Despite advances in genetic editing and immunosuppression, survival in experimental models of kidney xenotransplant has generally been limited to <100 days. We found that pretransplant selection of recipients with low titers of anti-pig antibodies significantly improved survival in a pig-to-rhesus macaque kidney transplant model (6 days vs median survival time 235 days). Immunosuppression included transient pan-T cell depletion and an anti-CD154-based maintenance regimen. Selective depletion of CD4+ T cells but not CD8+ T cells resulted in long-term survival (median survival time >400 days vs 6 days). These studies suggested that CD4+ T cells may have a more prominent role in xenograft rejection compared with CD8+ T cells. Although animals that received selective depletion of CD8+ T cells showed signs of early cellular rejection (marked CD4+ infiltrates), animals receiving selective CD4+ depletion exhibited normal biopsy results until late, when signs of chronic antibody rejection were present. In vitro study results suggested that rhesus CD4+ T cells required the presence of SLA class II to mount an effective proliferative response. The combination of low pretransplant anti-pig antibody and CD4 depletion resulted in consistent, long-term xenograft survival.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Rejeição de Enxerto/etiologia , Sobrevivência de Enxerto/imunologia , Tolerância Imunológica/imunologia , Transplante de Rim/efeitos adversos , Depleção Linfocítica/efeitos adversos , Animais , Rejeição de Enxerto/patologia , Xenoenxertos , Macaca mulatta , Suínos
3.
Immunogenetics ; 71(7): 479-487, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31270568

RESUMO

Xenotransplantation of pig organs into people may help alleviate the critical shortage of donors which faces organ transplantation. Unfortunately, human antibodies vigorously attack pig tissues preventing the clinical application of xenotransplantation. The swine leukocyte antigens (SLA), homologs of human HLA molecules, can be xenoantigens. SLA molecules, encoded by genes in the pig major histocompatibility complex, contribute to protective immune responses in pig. Therefore, simply inactivating them through genome engineering could reduce the ability of the human immune system to surveil transplanted pig organs for infectious disease or the development of neoplasms. A potential solution to this problem is to identify and modify epitopes in SLA proteins to eliminate their contribution to humoral xenoantigenicity while retaining their biosynthetic competence and ability to contribute to protective immunity. We previously showed that class II SLA proteins were recognized as xenoantigens and mutating arginine at position 55 to proline, in an SLA-DQ beta chain, could reduce human antibody binding. Here, we extend these observations by creating several additional point mutants at position 55. Using a panel of monoclonal antibodies specific for class II SLA proteins, we show that these mutants remain biosynthetically competent. Examining antibody binding to these variants shows that point mutagenesis can reduce, eliminate, or increase antibody binding to class II SLA proteins. Individual mutations can have opposite effects on antibody binding when comparing samples from different people. We also performed a preliminary analysis of creating point mutants near to position 55 to demonstrate that manipulating additional residues also affects antibody reactivity.


Assuntos
Anticorpos Monoclonais/metabolismo , Epitopos/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Animais , Antígenos Heterófilos/genética , Arginina/genética , Células HEK293 , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Mutagênese Sítio-Dirigida , Mutação Puntual , Suínos
4.
Xenotransplantation ; 26(4): e12504, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30825348

RESUMO

The humoral barrier has been the limiting factor in moving xenotransplantation towards the clinic. Improvements in somatic cell nuclear transfer and genome editing, particularly CRISPR-Cas9, have made it possible to create pigs with multiple glycan xenoantigen deletions for the purposes of reducing xenoreactive antibody binding to the xenografted organ. Recent studies have also considered the aetiology and existence of antibodies directed at the swine leucocyte antigen (SLA) complex, and potential genetic engineering strategies to avoid these antibodies. Evaluation of xenoreactive antibody binding is very important for the advancement of xenotransplantation, because if patients do not have any detectable xenoreactive antibody, then it is reasonable to expect that cellular rejection and not antibody-mediated rejection (AMR) will be the next hurdle to clinical application.


Assuntos
Antígenos Heterófilos/imunologia , Galactosiltransferases/imunologia , Técnicas de Inativação de Genes , Rejeição de Enxerto/prevenção & controle , Oxigenases de Função Mista/imunologia , N-Acetilgalactosaminiltransferases/imunologia , Suínos/imunologia , Transplante Heterólogo , Animais , Animais Geneticamente Modificados/imunologia , Anticorpos Heterófilos/biossíntese , Anticorpos Heterófilos/imunologia , Reações Antígeno-Anticorpo , Antígenos Heterófilos/genética , Epitopos/imunologia , Galactosiltransferases/deficiência , Galactosiltransferases/genética , Engenharia Genética , Rejeição de Enxerto/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Oxigenases de Função Mista/deficiência , Oxigenases de Função Mista/genética , N-Acetilgalactosaminiltransferases/deficiência , N-Acetilgalactosaminiltransferases/genética , Imunologia de Transplantes
5.
J Surg Res ; 229: 28-40, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29937002

RESUMO

BACKGROUND: Tools for genome editing in pigs are improving rapidly so that making precise cuts in DNA for the purposes of deleting genes is straightforward. Development of means to replace pig genes with human genes with precision is very desirable for the future development of donor pigs for xenotransplantation. MATERIALS AND METHODS: We used Cas9 to cut pig thrombomodulin (pTHBD) and replace it with a plasmid containing a promoterless antibiotic selection marker and the exon for human thrombomodulin. PhiC31 recombinase was used to remove the antibiotic selection marker to create porcine aortic endothelial cells expressing human instead of pTHBD, driven by the endogenous pig promoter. RESULTS: The promoterless selection cassette permitted efficient enrichment of cells containing correctly inserted transgene. Recombinase treatment of selected cells excised the resistance marker permitting expression of the human transgene by the endogenous pTHBD promoter. Gene regulation was maintained after gene replacement because pig endogenous promoter was kept intact in the correct position. CONCLUSIONS: Cas9 and recombinase technology make orthotopic human for pig gene exchange feasible and pave the way for creation of pigs with human genes that can be expressed in the appropriate tissues preserving gene regulation.


Assuntos
Edição de Genes/métodos , Suínos/genética , Trombomodulina/genética , Coleta de Tecidos e Órgãos/métodos , Transplante Heterólogo , Animais , Animais Geneticamente Modificados/genética , Bacteriófagos/genética , Sistemas CRISPR-Cas/genética , Células Cultivadas , Células Endoteliais , Cultura Primária de Células , Recombinases/genética , Transfecção/métodos , Proteínas Virais/genética
6.
J Surg Res ; 212: 238-245, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28550913

RESUMO

BACKGROUND: Nuclease-based genome editing has rapidly sped the creation of new models of human disease. These techniques also hold great promise for the future of clinical xenotransplantation and cell-based therapies for cancer or immunodeficient pathology. However, to fully realize the potential of nuclease editing tools, the efficiency and precision of their application must be optimized. The object of this study was to use nonintegrating selection and nuclease-directed homologous recombination to efficiently control the genetic modification of the porcine genome. METHODS: Clustered randomly integrating spaced palindromic repeats and associated Cas9 protein (CRISPR/Cas9)-directed mutagenesis with a single-guide RNA target was designed to target the alpha-1,3-galactosyltransferase locus (GGTA1) of the porcine genome. A vector expressing a single-guide RNA, Cas9 protein, and green fluorescent protein was used to increase plasmid-delivered mutational efficiency when coupled with fluorescence sorting. Single and double-strand DNA oligonucleotides with a restriction site replacing the start codon were created with variable homology lengths surrounding the mutational event site. Finally, a transgene construct was flanked with 50 base pairs of homology directed immediately 5' to a nuclease cut site. These products were introduced to cells with a constant concentration of CRISPR/cas9 vector. Phenotype-specific mutational efficiency was measured by flow cytometer. Controlled homologous insertion was measured by Sanger sequence, restriction enzyme digest and flow cytometry. RESULTS: Expression of a fluorescence protein on the Cas9 vector functioned as a nonintegrating selection marker. Selection by this marker increased phenotype-silencing mutation rates from 3.5% to 82% (P = 0.0002). Insertion or deletion mutation increased from 11% to 96% (P = 0.0007). Co-transfection with homologous DNA oligonucleotides increased the aggregate phenotype-silencing mutation rates up to 22% and increased biallelic events. Single-strand DNA was twice as efficient as double-strand DNA. Furthermore, nuclease-mediated insertion by homology-directed repair successfully drove locus-specific transgene expression in the porcine genome. CONCLUSIONS: A nonintegrating selection strategy based on fluorescence expression can increase the mutational efficiency of the CRISPR/Cas9 system. The precision of this system can be increased by the addition of a very short homologous template sequence and can serve as a method for locus-specific transgene delivery. Together these strategies may be used to efficiently control mutational events. This system may be used to better use the potential of nuclease-mediated genomic editing.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Endonucleases , Galactosiltransferases/genética , Edição de Genes/métodos , Recombinação Homóloga , Mutação , Animais , Linhagem Celular , Suínos
7.
Transgenic Res ; 25(5): 751-9, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27100221

RESUMO

UNLABELLED: The future of solid organ transplantation is challenged by an increasing shortage of available allografts. Xenotransplantation of genetically modified porcine organs offers an answer to this problem. Strategies of genetic modification have 'humanized' the porcine model towards clinical relevance. Most notably, these approaches have aimed at either antigen reduction or human transgene expression. The object of this study was to evaluate the relative effects of both antigen reduction and direct complement regulation on the human-anti-porcine complement dependent cytotoxicity response. Genetically modified animals were created through CRISPR/Cas9-directed mutation and human transgene delivery. Pigs doubly deficient in GGTA1 and CMAH genes were compared to pigs of the same background that expressed a human complement regulatory protein (hCRP). A third animal was made deficient in GGTA1, CMAH and B4GalNT2 gene expression. Cells from these animals were subjected to measures of human antibody binding and antibody-mediated complement-dependent cytotoxicity by flow cytometry. Human IgG and IgM antibody binding was unchanged between the double knockout and the transgenic hCRP double knockout pig. IgG and IgM binding was reduced by 49.1 and 43.2 % respectively by silencing the B4GalNT2 gene. Compared to the double knockout, human anti-porcine cytotoxicity was reduced by 8 % with the addition of a hCRP (p = .032); It was reduced by 21 % with silencing the B4GalNT2 gene (p = .012). CONCLUSIONS: Silencing the GGTA1, CMAH and B4GalNT2 genes in pigs achieved a significant antigen reduction. Changing the porcine carbohydrate profile effectively mediates human antibody-mediated complement dependent cytoxicity.


Assuntos
Proteínas do Sistema Complemento/imunologia , Citotoxicidade Imunológica , Galactosiltransferases/genética , Oxigenases de Função Mista/genética , N-Acetilgalactosaminiltransferases/genética , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/imunologia , Sistemas CRISPR-Cas/genética , Proteínas do Sistema Complemento/biossíntese , Proteínas do Sistema Complemento/genética , Regulação da Expressão Gênica , Humanos , Transplante de Órgãos , Suínos/imunologia , Transplante Heterólogo
8.
Xenotransplantation ; 23(2): 106-16, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-27106872

RESUMO

BACKGROUND: The Galα(1,3)Gal epitope (α-GAL), created by α-1,3-glycosyltransferase-1 (GGTA1), is a major xenoantigen causing hyperacute rejection in pig-to-primate and pig-to-human xenotransplantation. In response, GGTA1 gene-deleted pigs have been generated. However, it is unclear whether there is a residual small amount of α-Gal epitope expressed in GGTA1(-/-) pigs. Isoglobotrihexosylceramide synthase (iGb3s), another member of the glycosyltransferase family, catalyzes the synthesis of isoglobo-series glycosphingolipids with an α-GAL-terminal disaccharide (iGb3), creating the possibility that iGb3s may be a source of α-GAL epitopes in GGTA1(-/-) animals. The objective of this study was to examine the impact of silencing the iGb3s gene (A3GalT2) on pig-to-primate and pig-to-human immune cross-reactivity by creating and comparing GGTA1(-/-) pigs to GGTA1(-/-) - and A3GalT2(-/-) -double-knockout pigs. METHODS: We used the CRISPR/Cas 9 system to target the GGTA1 and A3GalT2 genes in pigs. Both GGTA1 and A3GalT2 genes are functionally inactive in humans and baboons. CRISPR-treated cells used directly for somatic cell nuclear transfer produced single- and double-gene-knockout piglets in a single pregnancy. Once grown to maturity, the glycosphingolipid profile (including iGb3) was assayed in renal tissue by normal-phase liquid chromatography. In addition, peripheral blood mononuclear cells (PBMCs) were subjected to (i) comparative cross-match cytotoxicity analysis against human and baboon serum and (ii) IB4 staining for α-GAL/iGb3. RESULTS: Silencing of the iGb3s gene significantly modulated the renal glycosphingolipid profile and iGb3 was not detected. Moreover, the human and baboon serum PBMC cytotoxicity and α-GAL/iGb3 staining were unchanged by iGb3s silencing. CONCLUSIONS: Our data suggest that iGb3s is not a contributor to antibody-mediated rejection in pig-to-primate or pig-to-human xenotransplantation. Although iGb3s gene silencing significantly changed the renal glycosphingolipid profile, the effect on Galα3Gal levels, antibody binding, and cytotoxic profiles of baboon and human sera on porcine PBMCs was neutral.


Assuntos
Galactose/metabolismo , Galactosiltransferases/genética , Rejeição de Enxerto/genética , Xenoenxertos/imunologia , Transplante Heterólogo , Doença Aguda , Animais , Animais Geneticamente Modificados , Sistemas CRISPR-Cas/genética , Galactosiltransferases/metabolismo , Técnicas de Inativação de Genes/métodos , Humanos , Leucócitos Mononucleares/imunologia , Papio , Suínos , Transplante Heterólogo/métodos
9.
J Immunol ; 193(11): 5751-7, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25339675

RESUMO

Pigs are emerging as important large animal models for biomedical research, and they may represent a source of organs for xenotransplantation. The MHC is pivotal to the function of the immune system in health and disease, and it is particularly important in infection and transplant rejection. Pigs deficient in class I MHC could serve as important reagents to study viral immunity as well as allograft and xenograft rejection. In this study, we report the creation and characterization of class I MHC knockout pigs using the Cas9 nuclease and guide RNAs. Pig fetal fibroblasts were genetically engineered using Cas9 and guide RNAs, and class I MHC(-) cells were then used as nuclear donors for somatic cell nuclear transfer. We produced three piglets devoid of all cell surface class I proteins. Although these animals have reduced levels of CD4(-)CD8(+) T cells in peripheral blood, the pigs appear healthy and are developing normally. These pigs are a promising reagent for immunological research.


Assuntos
Fibroblastos/fisiologia , Técnicas de Silenciamento de Genes/métodos , Antígenos de Histocompatibilidade Classe I/genética , Suínos/imunologia , Linfócitos T/imunologia , Transplante Heterólogo , Viroses/imunologia , Animais , Células Cultivadas , Endonucleases/metabolismo , Engenharia Genética , Rejeição de Enxerto , Modelos Animais , Técnicas de Transferência Nuclear , RNA Guia de Cinetoplastídeos/genética , Suínos/genética
10.
Xenotransplantation ; 22(1): 20-31, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25178170

RESUMO

BACKGROUND: Manipulating the pig genome to increase compatibility with human biology may facilitate the clinical application of xenotransplantation. Genetic modifications to pig cells have been made by sequential recombination in fetal fibroblasts and liver-derived cells followed by cross-breeding or somatic cell nuclear transfer. The generation of pigs for research or organ donation by these methods is slow, expensive and requires technical expertise. A novel system incorporating the bacterial nuclease Cas9 and single-guide RNA targeting a 20 nucleotide site within a gene can be expressed from a single plasmid leading to a double-strand break and gene disruption. Coexpression of multiple unique single-guide RNA can modify several genetic loci in a single step. We describe a process for increasing the efficiency of selecting cells with multiple genetic modifications. METHODS: We used the CRISPR/Cas system to target the GGTA1, CMAH and putative iGb3S genes in pigs that have been naturally deleted in humans. Cells lacking galactose α-1,3 galactose (α-Gal) were negatively selected by an IB4 lectin/magnetic bead. α-Gal negative multiplexed single-guide RNA-treated cells were used for somatic cell nuclear transfer (SCNT) and transferred to fertile sows. We examined the levels of α-Gal and Neu5Gc expression of 32 day fetuses and piglets and analyzed the targeted genes by DNA sequencing. RESULTS: Liver-derived cells treated with multiple single-guide RNA and selected for an α-Gal null phenotype were significantly more likely to also carry mutations in simultaneously targeted genes. Multiplex single-guide RNA-treated cells used directly for SCNT without further genetic selection produced piglets with deletions in the targeted genes but also created double- and triple-gene KO variations. CRISPR/Cas-treated cells grew normally and yielded normal liters of healthy piglets via somatic cell nuclear transfer. CONCLUSIONS: The CRISPR/Cas system allows targeting of multiple genes in a single reaction with the potential to create pigs of one genetic strain or multiple genetic modifications in a single pregnancy. The application of this phenotypic selection strategy with multiplexed sgRNA and the Cas9 nuclease has accelerated our ability to produce and evaluate pigs important to xenotransplantation.


Assuntos
Sistemas CRISPR-Cas , Galactosiltransferases/genética , Técnicas de Inativação de Genes , Oxigenases de Função Mista/genética , Técnicas de Transferência Nuclear , RNA Guia de Cinetoplastídeos/genética , Sus scrofa/genética , Animais , Antígenos Heterófilos/genética , Biotinilação , Feminino , Deleção de Genes , Vetores Genéticos , Hepatócitos/citologia , Separação Imunomagnética , Fenótipo , Lectinas de Plantas/metabolismo , Gravidez , Estreptavidina , Suínos
11.
Xenotransplantation ; 22(3): 203-10, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25728617

RESUMO

BACKGROUND: The lethal thrombocytopenia that accompanies liver xenotransplantation is a barrier to clinical application. Human platelets are bound by the asialoglycoprotein receptor (ASGR) on pig sinusoidal endothelial cells and phagocytosed. Inactivation of the ASGR1 gene in donor pigs may prevent xenotransplantation-induced thrombocytopenia. METHODS: Transcription activator-like effector nucleases (TALENs) were targeted to the ASGR1 gene in pig liver-derived cells. ASGR1 deficient pig cells were used for somatic cell nuclear transfer (SCNT). ASGR1 knock out (ASGR1-/-) fetal fibroblasts were used to produce healthy ASGR1 knock out piglets. Human platelet uptake was measured in ASGR1+/+ and ASGR1-/- livers. RESULTS: Targeted disruption of the ASGR1 gene with TALENs eliminated expression of the receptor. ASGR1-/- livers phagocytosed fewer human platelets than domestic porcine livers during perfusion. CONCLUSIONS: The use of TALENs in liver-derived cells followed by SCNT enabled the production of healthy homozygous ASGR1 knock out pigs. Livers from ASGR1-/- pigs exhibit decreased human platelet uptake. Deletion of the ASGR1 gene is a viable strategy to diminish platelet destruction in pig-to-human xenotransplantation.


Assuntos
Receptor de Asialoglicoproteína/metabolismo , Plaquetas/metabolismo , Fígado/citologia , Transplante Heterólogo , Animais , Receptor de Asialoglicoproteína/genética , Células Endoteliais/metabolismo , Técnicas de Inativação de Genes/métodos , Hepatócitos/metabolismo , Humanos , Técnicas de Transferência Nuclear , Suínos , Trombocitopenia/imunologia
12.
Xenotransplantation ; 22(3): 221-30, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25847130

RESUMO

Xenotransplantation has the potential to alleviate the organ shortage that prevents many patients with end-stage renal disease from enjoying the benefits of kidney transplantation. Despite significant advances in other models, pig-to-primate kidney xenotransplantation has met limited success. Preformed anti-pig antibodies are an important component of the xenogeneic immune response. To address this, we screened a cohort of 34 rhesus macaques for anti-pig antibody levels. We then selected animals with both low and high titers of anti-pig antibodies to proceed with kidney transplant from galactose-α1,3-galactose knockout/CD55 transgenic pig donors. All animals received T-cell depletion followed by maintenance therapy with costimulation blockade (either anti-CD154 mAb or belatacept), mycophenolate mofetil, and steroid. The animal with the high titer of anti-pig antibody rejected the kidney xenograft within the first week. Low-titer animals treated with anti-CD154 antibody, but not belatacept exhibited prolonged kidney xenograft survival (>133 and >126 vs. 14 and 21 days, respectively). Long-term surviving animals treated with the anti-CD154-based regimen continue to have normal kidney function and preserved renal architecture without evidence of rejection on biopsies sampled at day 100. This description of the longest reported survival of pig-to-non-human primate kidney xenotransplantation, now >125 days, provides promise for further study and potential clinical translation.


Assuntos
Rejeição de Enxerto/imunologia , Sobrevivência de Enxerto/efeitos dos fármacos , Sobrevivência de Enxerto/imunologia , Transplante de Rim , Transplante Heterólogo , Animais , Animais Geneticamente Modificados/imunologia , Ligante de CD40/imunologia , Rejeição de Enxerto/diagnóstico , Sobrevivência de Enxerto/genética , Xenoenxertos/imunologia , Imunossupressores/farmacologia , Rim/imunologia , Transplante de Rim/métodos , Macaca mulatta , Suínos
13.
Lancet ; 382(9894): 790-6, 2013 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-23755828

RESUMO

BACKGROUND: VKORC1 and CYP2C9 are important contributors to warfarin dose variability, but explain less variability for individuals of African descent than for those of European or Asian descent. We aimed to identify additional variants contributing to warfarin dose requirements in African Americans. METHODS: We did a genome-wide association study of discovery and replication cohorts. Samples from African-American adults (aged ≥18 years) who were taking a stable maintenance dose of warfarin were obtained at International Warfarin Pharmacogenetics Consortium (IWPC) sites and the University of Alabama at Birmingham (Birmingham, AL, USA). Patients enrolled at IWPC sites but who were not used for discovery made up the independent replication cohort. All participants were genotyped. We did a stepwise conditional analysis, conditioning first for VKORC1 -1639G→A, followed by the composite genotype of CYP2C9*2 and CYP2C9*3. We prespecified a genome-wide significance threshold of p<5×10(-8) in the discovery cohort and p<0·0038 in the replication cohort. FINDINGS: The discovery cohort contained 533 participants and the replication cohort 432 participants. After the prespecified conditioning in the discovery cohort, we identified an association between a novel single nucleotide polymorphism in the CYP2C cluster on chromosome 10 (rs12777823) and warfarin dose requirement that reached genome-wide significance (p=1·51×10(-8)). This association was confirmed in the replication cohort (p=5·04×10(-5)); analysis of the two cohorts together produced a p value of 4·5×10(-12). Individuals heterozygous for the rs12777823 A allele need a dose reduction of 6·92 mg/week and those homozygous 9·34 mg/week. Regression analysis showed that the inclusion of rs12777823 significantly improves warfarin dose variability explained by the IWPC dosing algorithm (21% relative improvement). INTERPRETATION: A novel CYP2C single nucleotide polymorphism exerts a clinically relevant effect on warfarin dose in African Americans, independent of CYP2C9*2 and CYP2C9*3. Incorporation of this variant into pharmacogenetic dosing algorithms could improve warfarin dose prediction in this population. FUNDING: National Institutes of Health, American Heart Association, Howard Hughes Medical Institute, Wisconsin Network for Health Research, and the Wellcome Trust.


Assuntos
Anticoagulantes/administração & dosagem , Hidrocarboneto de Aril Hidroxilases/genética , Negro ou Afro-Americano/genética , Polimorfismo de Nucleotídeo Único/genética , Varfarina/administração & dosagem , Alelos , Anticoagulantes/farmacocinética , Citocromo P-450 CYP2C9 , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Oxigenases de Função Mista/genética , Vitamina K Epóxido Redutases , Varfarina/farmacocinética
14.
Xenotransplantation ; 21(4): 376-84, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24986655

RESUMO

BACKGROUND: Pig erythrocytes are potentially useful to solve the worldwide shortage of human blood for transfusion. Domestic pig erythrocytes, however, express antigens that are bound by human preformed antibodies. Advances in genetic engineering have made it possible to rapidly knock out the genes of multiple xenoantigens, namely galactose α1,3 galactose (aGal) and N-glycolylneuraminic acid (Neu5Gc). We have recently targeted the GGTA1 and CMAH genes with zinc finger endonucleases resulting in double knockout pigs that no longer express aGal or Neu5Gc and attract significantly fewer human antibodies. In this study, we characterized erythrocytes from domestic and genetically modified pigs, baboons, chimpanzees, and humans for binding of human and baboon natural antibody, and complement-mediated lysis. METHODS: Distribution of anti-Neu5Gc IgG and IgM in pooled human AB serum was analyzed by ELISA. Erythrocytes from domestic pigs (Dom), aGal knockout pigs (GGTA1 KO), aGal and Neu5Gc double knockout pigs (GGTA1/CMAH KO), baboons, chimpanzees, and humans were analyzed by flow cytometry for aGal and Neu5Gc expression. In vitro comparative analysis of erythrocytes was conducted with pooled human AB serum and baboon serum. Total antibody binding was accessed by hemagglutination; complement-dependent lysis was measured by hemolytic assay; IgG or IgM binding to erythrocytes was characterized by flow cytometry. RESULTS: The pooled human AB serum contained 0.38 µg/ml anti-Neu5Gc IgG and 0.085 µg/ml anti-Neu5Gc IgM. Both Gal and Neu5Gc were not detectable on GGTA1/CMAH KO erythrocytes. Hemagglutination of GGTA1/CMAH KO erythrocytes with human serum was 3.5-fold lower compared with GGTA1 KO erythrocytes, but 1.6-fold greater when agglutinated with baboon serum. Hemolysis of GGTA1/CMAH KO erythrocytes by human serum (25%) was reduced 9-fold compared with GGTA1 KO erythrocytes, but increased 1.64-fold by baboon serum. Human IgG binding was reduced 27-fold on GGTA1/CMAH KO erythrocytes compared with GGTA1 KO erythrocytes, but markedly increased 3-fold by baboon serum IgG. Human IgM binding was decreased 227-fold on GGTA1/CMAH KO erythrocytes compared with GGTA1 KO erythrocytes, but enhanced 5-fold by baboon serum IgM. CONCLUSIONS: Removal of aGal and Neu5Gc antigens from pig erythrocytes significantly reduced human preformed antibody-mediated cytotoxicity but may have complicated future in vivo analysis by enhancing reactivity from baboons. The creation of the GGTA1/CMAH KO pig has provided the xenotransplantation researcher with organs and cells that attract fewer human antibodies than baboon and our closest primate relative, chimpanzee. These finding suggest that while GGTA1/CMAH KO erythrocytes may be useful for human transfusions, in vivo testing in the baboon may not provide a direct transplantation to the clinic.


Assuntos
Transfusão de Eritrócitos/métodos , Galactosiltransferases/deficiência , Técnicas de Inativação de Genes/veterinária , Oxigenases de Função Mista/deficiência , Sus scrofa/sangue , Sus scrofa/genética , Transplante Heterólogo/métodos , Animais , Animais Geneticamente Modificados , Anticorpos Heterófilos/sangue , Transfusão de Eritrócitos/efeitos adversos , Eritrócitos/imunologia , Galactosiltransferases/sangue , Galactosiltransferases/genética , Humanos , Imunidade Inata , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Oxigenases de Função Mista/sangue , Oxigenases de Função Mista/genética , Modelos Animais , Papio , Primatas , Transplante Heterólogo/efeitos adversos
15.
BMC Genomics ; 14 Suppl 3: S11, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23819817

RESUMO

BACKGROUND: Many genome-wide association studies focus on associating single loci with target phenotypes. However, in the setting of rare variation, accumulating sufficient samples to assess these associations can be difficult. Moreover, multiple variations in a gene or a set of genes within a pathway may all contribute to the phenotype, suggesting that the aggregation of variations found over the gene or pathway may be useful for improving the power to detect associations. RESULTS: Here, we present a method for aggregating single nucleotide polymorphisms (SNPs) along biologically relevant pathways in order to seek genetic associations with phenotypes. Our method uses all available genetic variants and does not remove those in linkage disequilibrium (LD). Instead, it uses a novel SNP weighting scheme to down-weight the contributions of correlated SNPs. We apply our method to three cohorts of patients taking warfarin: two European descent cohorts and an African American cohort. Although the clinical covariates and key pharmacogenetic loci for warfarin have been characterized, our association metric identifies a significant association with mutations distributed throughout the pathway of warfarin metabolism. We improve dose prediction after using all known clinical covariates and pharmacogenetic variants in VKORC1 and CYP2C9. In particular, we find that at least 1% of the missing heritability in warfarin dose may be due to the aggregated effects of variations in the warfarin metabolic pathway, even though the SNPs do not individually show a significant association. CONCLUSIONS: Our method allows researchers to study aggregative SNP effects in an unbiased manner by not preselecting SNPs. It retains all the available information by accounting for LD-structure through weighting, which eliminates the need for LD pruning.


Assuntos
Genoma Humano/genética , Estudo de Associação Genômica Ampla/métodos , Redes e Vias Metabólicas/genética , Modelos Genéticos , Polimorfismo de Nucleotídeo Único/genética , Varfarina/metabolismo , Negro ou Afro-Americano/genética , Hidrocarboneto de Aril Hidroxilases/genética , Citocromo P-450 CYP2C9 , Relação Dose-Resposta a Droga , Genótipo , Humanos , Desequilíbrio de Ligação , Oxigenases de Função Mista/genética , Vitamina K Epóxido Redutases , Varfarina/administração & dosagem , População Branca/genética
16.
Front Immunol ; 11: 622, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32351506

RESUMO

Seventy to ninety percentage of preformed xenoreactive antibodies in human serum bind to the galactose-α(1,3)-galactose Gal epitope, and the creation of Gal knockout (KO) pigs has eliminated hyperacute rejection as a barrier to xenotransplantation. Now other glycan antigens are barriers to move ahead with xenotransplantation, and the N-glycolyl neuraminic acid, Neu5Gc (or Hanganutziu-Deicher antigen), is also a major pig xenoantigen. Humans have anti-Neu5Gc antibodies. Several data indicate a strong immunogenicity of Neu5Gc in humans that may contribute to an important part in antibody-dependent injury to pig xenografts. Pig islets express Neu5Gc, which reacted with diet-derived human antibodies and mice deleted for Neu5Gc reject pancreatic islets from wild-type counterpart. However, Neu5Gc positive heart were not rejected in Neu5Gc KO mice indicating that the role of Neu5Gc-specific antibodies has to be nuanced and depend of the graft situation parameters (organ/tissue, recipient, implication of other glycan antigens). Recently generated Gal/Neu5Gc KO pigs eliminate the expression of Gal and Neu5Gc, and improve the crossmatch of humans with the pig. This review summarizes the current and recent experimental and (pre)clinical data on the Neu5Gc immunogenicity and emphasize of the potential impact of anti-Neu5Gc antibodies in limiting xenotransplantation in humans.


Assuntos
Anticorpos Heterófilos/metabolismo , Rejeição de Enxerto/imunologia , Xenoenxertos/imunologia , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas/imunologia , Ácidos Neuramínicos/imunologia , Transplante Heterólogo , Animais , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Humanos , Suínos
17.
Annu Rev Anim Biosci ; 8: 171-198, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31846353

RESUMO

In pigs, the major histocompatibility complex (MHC), or swine leukocyte antigen (SLA) complex, maps to Sus scrofa chromosome 7. It consists of three regions, the class I and class III regions mapping to 7p1.1 and the class II region mapping to 7q1.1. The swine MHC is divided by the centromere, which is unique among mammals studied to date. The SLA complexspans between 2.4 and 2.7 Mb, depending on haplotype, and encodes approximately 150 loci, with at least 120 genes predicted to be functional. Here we update the whole SLA complex based on the Sscrofa11.1 build and annotate the organization for all recognized SLA genes and their allelic sequences. We present SLA nomenclature and typing methods and discuss the expression of SLA proteins, as well as their role in antigen presentation and immune, disease, and vaccine responses. Finally, we explore the role of SLA genes in transplantation and xenotransplantation and their importance in swine biomedical models.


Assuntos
Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Suínos/imunologia , Animais , Regulação da Expressão Gênica , Modelos Animais , Suínos/genética , Doenças dos Suínos/imunologia , Transplantes/imunologia
18.
Transplantation ; 103(8): 1620-1629, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30951017

RESUMO

BACKGROUND: Highly sensitized patients are difficult to match with suitable renal allograft donors and may benefit from xenotransplant trials. We evaluate antibody binding from sensitized patients to pig cells and engineered single allele cells to identify anti-human leukocyte antigen (HLA) antibody cross-species reactivity with swine leukocyte antigen (SLA). These novel testing strategies assess HLA/SLA epitopes and antibody-binding patterns and introduce genetic engineering of SLA epitopes. METHODS: Sensitized patient sera were grouped by calculated panel reactive antibody and luminex single antigen reactivity profile and were tested with cloned GGTA1/CMAH/B4GalNT2 glycan knockout porcine cells. Pig reactivity was assessed by direct flow cytometric crossmatch and studied following elution from pig cells. To study the antigenicity of individual class I HLA and SLA alleles in cells, irrelevant sera binding to lymphoblastoid cells were minimized by CRISPR/Cas9 elimination of endogenous class I and class II HLA, B-cell receptor, and Fc receptor genes. Native HLA, SLA, and mutants of these proteins after mutating 144K to Q were assessed for antibody binding. RESULTS: Those with predominately anti-HLA-B&C antibodies, including Bw6 and Bw4 sensitization, frequently have low pig reactivity. Conversely, antibodies eluted from porcine cells are more commonly anti-HLA-A. Single HLA/SLA expressing engineered cells shows variable antigenicity and mutation of 144K to Q reduces antibody binding for some sensitized patients. CONCLUSIONS: Anti-HLA antibodies cross-react with SLA class I in predictable patterns, which can be identified with histocompatibility strategies, and SLA class I is a possible target of genetic engineering.


Assuntos
Epitopos/genética , Antígenos de Histocompatibilidade Classe I/genética , Transplante de Rim , Alelos , Animais , Modelos Animais de Doenças , Teste de Histocompatibilidade , Humanos , Suínos , Transplante Heterólogo
19.
Transplantation ; 102(2): 249-254, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28846555

RESUMO

BACKGROUND: Over 130 000 patients in the United States alone need a lifesaving organ transplant. Genetically modified porcine organs could resolve the donor organ shortage, but human xenoreactive antibodies destroy pig cells and are the major barrier to clinical application of xenotransplantation. The objective of this study was to determine whether waitlisted patients possess preformed antibodies to swine leukocyte antigen (SLA) class II, homologs of the class II HLA. METHODS: Sera from people currently awaiting solid organ transplant were tested for IgG binding to class II SLA proteins when expressed on mammalian cells. Pig fibroblasts were made positive by transfection with the class II transactivator. As a second expression system, transgenes encoding the alpha and beta chains of class II SLA were transfected into human embryonic kidney cells. RESULTS: Human sera containing IgG specific for class II HLA molecules exhibited greater binding to class II SLA positive cells than to SLA negative cells. Sera lacking antibodies against class II HLA showed no change in binding regardless of the presence of class II SLA. These antibodies could recognize either SLA-DR or SLA-DQ complexes. CONCLUSIONS: Class II SLA proteins may behave as xenoantigens for people with humoral immunity toward class II HLA molecules.


Assuntos
Antígenos Heterófilos/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Animais , Humanos , Imunoglobulina G/imunologia , Suínos
20.
Transplantation ; 101(3): 517-523, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27379553

RESUMO

BACKGROUND: The rapidly improving tools of genetic engineering may make it possible to overcome the humoral immune barrier that prevents xenotransplantation. We hypothesize that levels of human antibody binding to donor tissues from swine must approximate the antibody binding occurring in allotransplantation. It is uncertain if this is an attainable goal. Here we perform an initial analysis of this issue by comparing human antibody binding to red blood cells (RBC) isolated from knockout swine and to allogeneic or autologous human RBC. METHODS: Human sera were incubated with RBC isolated from various genetically engineered swine or from humans. The level of IgG and IgM binding to these cells were compared using either flow cytometry or a novel mass spectrometric assay. RESULTS: Mass spectroscopic quantitation of human antibody binding demonstrated that as few as 3 gene inactivations can reduce the levels human antibody binding to swine RBC that is as low as autologous human RBC. Flow cytometry showed that RBC from 2-gene knockout swine exhibited less human antibody binding than human blood group O allogeneic RBC in 22% of tested sera. Deletion of a third gene from pigs resulted in 30% of human samples having less IgG and IgM RBC xenoreactivity than alloreactivity. CONCLUSIONS: Xenoantigenicity of swine RBC can be eliminated via gene disruption. These results suggest that the gene knockout approach may be able reduce antigenicity in other pig tissues to levels that enable the xenotransplantation humoral barrier to be overcome.


Assuntos
Antígenos Heterófilos/genética , Antígenos Heterófilos/imunologia , Eritrócitos/imunologia , Técnicas de Inativação de Genes , Histocompatibilidade , Suínos/imunologia , Animais , Animais Geneticamente Modificados , Antígenos Heterófilos/sangue , Sítios de Ligação de Anticorpos , Citometria de Fluxo , Sobrevivência de Enxerto , Humanos , Imunidade Humoral , Isoanticorpos/sangue , Isoanticorpos/imunologia , Ligação Proteica , Suínos/sangue , Suínos/genética , Espectrometria de Massas em Tandem , Tolerância ao Transplante , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA