Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Cancer ; 154(10): 1842-1856, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38289016

RESUMO

Triple negative breast cancers (TNBC) are characterized by a poor prognosis and a lack of targeted treatments. Their progression depends on tumor cell intrinsic factors, the tumor microenvironment and host characteristics. Although adipocytes, the primary stromal cells of the breast, have been determined to be plastic in physiology and cancer, the tumor-derived molecular mediators of tumor-adipocyte crosstalk have not been identified yet. In this study, we report that the crosstalk between TNBC cells and adipocytes in vitro beyond adipocyte dedifferentiation, induces a unique transcriptional profile that is characterized by inflammation and pathways that are related to interaction with the tumor microenvironment. Accordingly, increased cancer stem-like features and recruitment of pro-tumorigenic immune cells are induced by this crosstalk through CXCL5 and IL-8 production. We identified serum amyloid A1 (SAA1) as a regulator of the adipocyte reprogramming through CD36 and P2XR7 signaling. In human TNBC, SAA1 expression was associated with cancer-associated adipocyte infiltration, inflammation, stimulated lipolysis, stem-like properties, and a distinct tumor immune microenvironment. Our findings constitute evidence that the interaction between tumor cells and adipocytes through the release of SAA1 is relevant to the aggressiveness of TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Transdução de Sinais , Células Estromais/patologia , Adipócitos/metabolismo , Inflamação/patologia , Microambiente Tumoral , Proteína Amiloide A Sérica/metabolismo
2.
Int J Mol Sci ; 24(21)2023 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-37958719

RESUMO

Neurotoxicity consists of the altered functionality of the nervous system caused by exposure to chemical agents or altered chemical-physical parameters. The neurotoxic effect can be evaluated from the molecular to the behavioural level. The zebrafish Danio rerio is a model organism used in many research fields, including ecotoxicology and neurotoxicology. Recent studies by our research group have demonstrated that the exposure of adult zebrafish to low (18 °C) or high (34 °C) temperatures alters their brain proteome and fish behaviour compared to control (26 °C). These results showed that thermal variation alters the functionality of the nervous system, suggesting a temperature-induced neurotoxic effect. To demonstrate that temperature variation can be counted among the factors that generate neurotoxicity, eight different protein datasets, previously published by our research group, were subjected to new analyses using an integrated proteomic approach by means of the Ingenuity Pathway Analysis (IPA) software (Release December 2022). The datasets consist of brain proteome analyses of wild type adult zebrafish kept at three different temperatures (18 °C, 26 °C, and 34 °C) for 4 days (acute) or 21 days (chronic treatment), and of BDNF+/- and BDNF-/- zebrafish kept at 26 °C or 34 °C for 21 days. The results (a) demonstrate that thermal alterations generate an effect that can be defined as neurotoxic (p value ≤ 0.05, activation Z score ≤ -2 or ≥2), (b) identify 16 proteins that can be used as hallmarks of the neurotoxic processes common to all the treatments applied and (c) provide three protein panels (p value ≤ 0.05) related to 18 °C, 34 °C, and BDNF depletion that can be linked to anxiety-like or boldness behaviour upon these treatments.


Assuntos
Síndromes Neurotóxicas , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Temperatura , Proteoma/metabolismo , Proteômica , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo
3.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36768322

RESUMO

Obesity is an epidemic condition linked to cardiovascular disease severity and mortality. Fat localization and type represent cardiovascular risk estimators. Importantly, visceral fat secretes adipokines known to promote low-grade inflammation that, in turn, modulate its secretome and cardiac metabolism. In this regard, IL-33 regulates the functions of various immune cells through ST2 binding and-following its role as an immune sensor to infection and stress-is involved in the pro-fibrotic remodeling of the myocardium. Here we further investigated the IL-33/ST2 effects on cardiac remodeling in obesity, focusing on molecular pathways linking adipose-derived IL-33 to the development of fibrosis or hypertrophy. We analyzed the Zucker Fatty rat model, and we developed in vitro models to mimic the adipose and myocardial relationship. We demonstrated a dysregulation of IL-33/ST2 signaling in both adipose and cardiac tissue, where they affected Epac proteins and myocardial gene expression, linked to pro-fibrotic signatures. In Zucker rats, pro-fibrotic effects were counteracted by ghrelin-induced IL-33 secretion, whose release influenced transcription factor expression and ST2 isoforms balance regulation. Finally, the effect of IL-33 signaling is dependent on several factors, such as cell types' origin and the balancing of ST2 isoforms. Noteworthy, it is reasonable to state that considering IL-33 to have a unique protective role should be considered over-simplistic.


Assuntos
Interleucina-33 , Obesidade , Receptores de Interleucina-1 , Remodelação Ventricular , Animais , Ratos , Cardiomegalia/genética , Cardiomegalia/metabolismo , Modelos Animais de Doenças , Fibrose/genética , Fibrose/metabolismo , Grelina/genética , Grelina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-33/genética , Interleucina-33/metabolismo , Miocárdio/metabolismo , Obesidade/complicações , Obesidade/genética , Obesidade/metabolismo , Ratos Zucker , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/metabolismo , Remodelação Ventricular/genética , Remodelação Ventricular/fisiologia
4.
Mol Ecol ; 31(14): 3844-3858, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35635253

RESUMO

Ocean acidification is impacting marine life all over the world. Understanding how species can cope with the changes in seawater carbonate chemistry represents a challenging issue. We addressed this topic using underwater CO2 vents that naturally acidify some marine areas off the island of Ischia. In the most acidified area of the vents, having a mean pH value of 6.7, comparable to far-future predicted acidification scenarios (by 2300), the biomass is dominated by the brown alga Sargassum vulgare. The novelty of the present study is the characterization of the S. vulgare proteome together with metabolite analyses to identify the key proteins, metabolites, and pathways affected by ocean acidification. A total of 367 and 387 proteins were identified in populations grown at pH that approximates the current global average (8.1) and acidified sites, respectively. Analysis of their relative abundance revealed that 304 proteins are present in samples from both sites: 111 proteins are either higher or exclusively present under acidified conditions, whereas 120 proteins are either lower or present only under control conditions. Functionally, under acidification, a decrease in proteins related to translation and post-translational processes and an increase of proteins involved in photosynthesis, glycolysis, oxidation-reduction processes, and protein folding were observed. In addition, small-molecule metabolism was affected, leading to a decrease of some fatty acids and antioxidant compounds under acidification. Overall, the results obtained by proteins and metabolites analyses, integrated with previous transcriptomic, physiological, and biochemical studies, allowed us to delineate the molecular strategies adopted by S. vulgare to grow in future acidified environments, including an increase of proteins involved in energetic metabolism, oxidation-reduction processes, and protein folding at the expense of proteins involved in translation and post-translational processes.


Assuntos
Sargassum , Dióxido de Carbono/química , Concentração de Íons de Hidrogênio , Proteômica , Água do Mar/química
5.
Cell Mol Life Sci ; 78(7): 3607-3620, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33484270

RESUMO

The flavoenzyme D-amino acid oxidase (DAAO) is deputed to the degradation of D-enantiomers of amino acids. DAAO plays various relevant physiological roles in different organisms and tissues. Thus, it has been recently suggested that the goblet cells of the mucosal epithelia secrete into the lumen of intestine, a processed and active form of DAAO that uses the intestinal D-amino acids to generate hydrogen peroxide (H2O2), an immune messenger that helps fighting gut pathogens, and by doing so controls the homeostasis of gut microbiota. Here, we show that the DAAO form lacking the 1-16 amino acid residues (the putative secretion signal) is unstable and inactive, and that DAAO is present in the epithelial layer and the mucosa of mouse gut, where it is largely proteolyzed. In silico predicted DAAO-derived antimicrobial peptides show activity against various Gram-positive and Gram-negative bacteria but not on Lactobacilli species, which represent the commensal microbiota. Peptidomic analysis reveals the presence of such peptides in the mucosal fraction. Collectively, we identify a novel mechanism for gut microbiota selection implying DAAO-derived antimicrobial peptides which are generated by intestinal proteases and that are secreted in the gut lumen. In conclusion, we herein report an additional, ancillary role for mammalian DAAO, unrelated to its enzymatic activity.


Assuntos
Antibacterianos/farmacologia , D-Aminoácido Oxidase/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Intestino Delgado/efeitos dos fármacos , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Sequência de Aminoácidos , Aminoácidos/química , Aminoácidos/metabolismo , Animais , D-Aminoácido Oxidase/química , D-Aminoácido Oxidase/genética , Feminino , Humanos , Intestino Delgado/metabolismo , Intestino Delgado/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Conformação Proteica , Ratos , Ratos Wistar , Homologia de Sequência
6.
Int J Mol Sci ; 23(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35409168

RESUMO

The etiopathogenesis of obesity-related chronic kidney disease (CKD) is still scarcely understood. To this aim, we assessed the effect of high-fat diet (HF) on molecular pathways leading to organ damage, steatosis, and fibrosis. Six-week-old male C57BL/6N mice were fed HF diet or normal chow for 20 weeks. Kidneys were collected for genomic, proteomic, histological studies, and lipid quantification. The main findings were as follows: (1) HF diet activated specific pathways leading to fibrosis and increased fatty acid metabolism; (2) HF diet promoted a metabolic shift of lipid metabolism from peroxisomes to mitochondria; (3) no signs of lipid accumulation and/or fibrosis were observed, histologically; (4) the early signs of kidney damage seemed to be related to changes in membrane protein expression; (5) the proto-oncogene MYC was one of the upstream transcriptional regulators of changes occurring in protein expression. These results demonstrated the potential usefulness of specific selected molecules as early markers of renal injury in HF, while histomorphological changes become visible later in obesity-related CDK. The integration of these information with data from biological fluids could help the identification of biomarkers useful for the early detection and prevention of tissue damage in clinical practice.


Assuntos
Dieta Hiperlipídica , Insuficiência Renal Crônica , Animais , Biomarcadores/metabolismo , Dieta Hiperlipídica/efeitos adversos , Fibrose , Rim/metabolismo , Lipídeos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Proteoma/metabolismo , Proteômica , Insuficiência Renal Crônica/metabolismo
7.
Int J Mol Sci ; 23(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35628418

RESUMO

Experimental evidence suggests that environmental stress conditions can alter the expression of BDNF and that the expression of this neurotrophin influences behavioural responses in mammalian models. It has been recently demonstrated that exposure to 34 °C for 21 days alters the brain proteome and behaviour in zebrafish. The aim of this work was to investigate the role of BDNF in the nervous system of adult zebrafish under control and heat treatment conditions. For this purpose, zebrafish from three different genotypes (wild type, heterozygous BDNF+/- and knock out BDNF-/-) were kept for 21 days at 26 °C or 34 °C and then euthanized for brain molecular analyses or subjected to behavioural tests (Y-maze test, novel tank test, light and dark test, social preference test, mirror biting test) for assessing behavioural aspects such as boldness, anxiety, social preference, aggressive behaviour, interest for the novel environment and exploration. qRT-PCR analysis showed the reduction of gene expression of BDNF and its receptors after heat treatment in wild type zebrafish. Moreover, proteomic analysis and behavioural tests showed genotype- and temperature-dependent effects on brain proteome and behavioural responding. Overall, the absent expression of BDNF in KO alters (1) the brain proteome by reducing the expression of proteins involved in synapse functioning and neurotransmitter-mediated transduction; (2) the behaviour, which can be interpreted as bolder and less anxious and (3) the cellular and behavioural response to thermal treatment.


Assuntos
Proteoma , Peixe-Zebra , Animais , Escala de Avaliação Comportamental , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Mamíferos/metabolismo , Proteoma/genética , Proteoma/metabolismo , Proteômica , Temperatura , Peixe-Zebra/metabolismo
8.
Molecules ; 27(9)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35566276

RESUMO

Elevated omega-6 (n-6) and omega-3 (n-3) polyunsaturated fatty acids (PUFAs) ratios in swine diets can potentially impose a higher risk of inflammatory and metabolic diseases in swine. A low ratio between the two omega PUFAs has beneficial effects on sows' and piglets' production performance and immunity status. At present, there are few studies on how sow nutrition directly affects the protein and fat deposition in suckling piglets. Two groups of sows were fed diets with high or low n-6/n-3 polyunsaturated ratios of 13:1 (SOY) and 4:1 (LIN), respectively, during gestation and lactation. Longissimus dorsi muscle and adipose tissue from newborn piglets, nourished only with sow's milk, were subjected to fatty acid profiling by gas chromatography-mass spectrometry (GC-MS) and to proteomics assays based on nano-liquid chromatography coupled to high-resolution tandem mass spectrometry (nLC-HRMS). Fatty acid profiles on both muscle and adipose tissues resembled the magnitude of the differences between fatty acid across diets. Proteomic analysis revealed overabundance of 4 muscle and 11 adipose tissue proteins in SOY compared to LIN in both piglet tissues. The detected overabundance of haptoglobin, an acute-phase protein, and the stimulation of protein-coding genes and proteins related to the innate immune response and acute inflammatory response could be associated with the pro-inflammatory role of n-6 PUFAs.


Assuntos
Ácidos Graxos Ômega-3 , Proteômica , Tecido Adiposo/metabolismo , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais , Ácidos Graxos/análise , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Insaturados/análise , Feminino , Lactação , Leite/química , Músculos/química , Gravidez , Suínos
9.
Sensors (Basel) ; 20(17)2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32887407

RESUMO

The urgent need to develop a detection system for Staphylococcus aureus, one of the most common causes of infection, is prompting research towards novel approaches and devices, with a particular focus on point-of-care analysis. Biosensors are promising systems to achieve this aim. We coupled the selectivity and affinity of aptamers, short nucleic acids sequences able to recognize specific epitopes on bacterial surface, immobilized at high density on a nanostructured zirconium dioxide surface, with the rational design of specifically interacting fluorescent peptides to assemble an easy-to-use detection device. We show that the displacement of fluorescent peptides upon the competitive binding of S. aureus to immobilized aptamers can be detected and quantified through fluorescence loss. This approach could be also applied to the detection of other bacterial species once aptamers interacting with specific antigens will be identified, allowing the development of a platform for easy detection of a pathogen without requiring access to a healthcare environment.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Staphylococcus aureus , Peptídeos , Staphylococcus aureus/isolamento & purificação
10.
Molecules ; 25(18)2020 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-32899982

RESUMO

Proteomic technologies have identified 234 peptidases in plasma but little quantitative information about the proteolytic activity has been uncovered. In this study, the substrate profile of plasma proteases was evaluated using two nano-LC-ESI-MS/MS methods. Multiplex substrate profiling by mass spectrometry (MSP-MS) quantifies plasma protease activity in vitro using a global and unbiased library of synthetic peptide reporter substrates, and shotgun peptidomics quantifies protein degradation products that have been generated in vivo by proteases. The two approaches gave complementary results since they both highlight key peptidase activities in plasma including amino- and carboxypeptidases with different substrate specificity profiles. These assays provide a significant advantage over traditional approaches, such as fluorogenic peptide reporter substrates, because they can detect active plasma proteases in a global and unbiased manner, in comparison to detecting select proteases using specific reporter substrates. We discovered that plasma proteins are cleaved by endoproteases and these peptide products are subsequently degraded by amino- and carboxypeptidases. The exopeptidases are more active and stable in plasma and therefore were found to be the most active proteases in the in vitro assay. The protocols presented here set the groundwork for studies to evaluate changes in plasma proteolytic activity in shock.


Assuntos
Peptídeo Hidrolases/sangue , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Animais , Peptídeo Hidrolases/química , Proteômica , Especificidade por Substrato , Suínos
11.
J Dairy Sci ; 102(12): 10760-10771, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31521344

RESUMO

Over the past decades, several studies investigated the health-promoting functions of milk peptides. However, to date many hurdles still exist regarding the widespread use of milk-derived bioactive peptides, as they may be degraded during gastrointestinal digestion. Thus, the aim of our study was to in vitro digest intact whey protein isolate (WPI) and casein proteins (CNP), mimicking in vivo digestion, to investigate their bioactive effects and to identify the potential peptides involved. Whey protein isolate and CNP were digested using a pepsin-pancreatin protocol and ultra-filtered (3-kDa cutoff membrane). A permeate (<3 kDa) and a retentate (>3 kDa) were obtained. Soy protein was included as a control (CTR). Angiotensin-1-converting enzyme inhibitory (ACE1-I) and antioxidant activity (AOX) were assessed and compared with those observed in undigested proteins and CTR. Furthermore, the permeate was characterized by nano-liquid chromatography electrospray ionization tandem mass spectrometry (LC-nano ESI MS/MS) using a shotgun peptidomic approach, and retentate was further digested with trypsin and analyzed by MS using a shotgun proteomic approach to identify potentially bioactive peptides. Further, the effects of WPI, CNP, and CTR retentate on cell metabolic activity and on mucus production (MUC5AC and MUC2 gene expression) were assessed in intestinal goblet HT29-MTX-E12 cells. Results showed that WPI permeate induced a significant ACE1-I inhibitory effect [49.2 ± 0.64% (SEM)] compared with undigested WPI, CNP permeate, and retentate or CTR permeate (10.40 ± 1.07%). A significant increase in AOX (1.58 ± 0.04 and 1.61 ± 0.02 µmol of trolox AOX equivalents per mg of protein, respectively) upon digestion was found in WPI. Potentially bioactive peptides associated with ACE1-I and antihypertensive effects were identified in WPI permeate and CNP retentate. At specific concentrations, WPI, CNP, and CTR retentate were able to stimulate metabolic activity in HT29-MTX-E12 cells. Expression of MUC5AC was increased by CNP retentate and unaltered by WPI retentate; MUC2 expression was significantly increased by 0.33 mg/g of CNP and reduced by 1.33 mg/g of CNP. Our results confirm that milk proteins may be rich sources of bioactive compounds, with the greatest beneficial potential of CNP at the intestinal goblet cell level.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/química , Antioxidantes/metabolismo , Digestão , Proteínas do Leite/metabolismo , Mucinas/genética , Peptidil Dipeptidase A/metabolismo , Animais , Caseínas/metabolismo , Cromatografia Líquida , Expressão Gênica , Células HT29 , Humanos , Leite/metabolismo , Proteínas de Soja/metabolismo , Espectrometria de Massas em Tandem , Soro do Leite/metabolismo
12.
Acc Chem Res ; 50(2): 231-239, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28116907

RESUMO

The development of smart prosthetics, scaffolds, and biomaterials for tissue engineering and organ-on-a-chip devices heavily depends on the understanding and control of biotic/abiotic interfaces. In recent years, the nanometer scale emerged as the predominant dimension for processes impacting on protein adsorption and cellular responses on surfaces. In this context, the extracellular matrix (ECM) can be seen as the prototype for an intricate natural structure assembled by nanoscale building blocks forming highly variable nanoscale configurations, dictating cellular behavior and fate. How exactly the ECM nanotopography influences mechanotransduction, that is, the cellular capacity to convert information received from the ECM into appropriate responses, remains partially understood due to the complexity of the involved biological structures, limiting also the attempts to artificially reproduce the nanoscale complexity of the ECM. In this Account, we describe and discuss our strategies for the development of an efficient and large-scale bottom-up approach to fabricate surfaces with multiscale controlled disorder as substrates to study quantitatively the effect of nanoscale topography on biological entities. Our method is based on the use of supersonic cluster beam deposition (SCBD) to assemble, on a substrate, neutral clusters produced in the gas phase and accelerated by a supersonic expansion. The assembling of clusters in the ballistic deposition regime follows simple scaling laws, allowing the quantitative control of surface roughness and asperity layout over large areas. Due to their biocompatibility, we focused on transition metal oxide nanostructured surfaces assembled by titania and zirconia clusters. We demonstrated the engineering of structural and functional properties of the cluster-assembled surfaces with high relevance for interactions at the biotic/abiotic interface. We observed that isoelectric point and wettability, crucial parameters for the adhesion of biological entities on surfaces, are strongly influenced and controlled by the nanoscale roughness. By developing a high-throughput method (protein surface interaction microarray, PSIM), we characterized quantitatively the capacity of the nanostructured surfaces to adsorb proteins, showing that with increasing roughness the adsorption rises beyond what could be expected by the increase in specific area, paralleled by an almost linear decrease in protein binding affinity. We also determined that the spatial layout of the surface asperities effectively perceived by the cells mimics at the nanoscale the topographical ECM characteristics. The interaction with these features consequently regulates parameters significant for cell adhesion and mechanotransductive signaling, such as integrin clustering, focal adhesion maturation, and the correlated cellular mechanobiology, eventually impacting the cellular program and differentiation, as we specifically showed for neuronal cells.


Assuntos
Nanoestruturas/química , Proteínas/química , Adsorção , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Adesão Celular/fisiologia , Diferenciação Celular , Matriz Extracelular/metabolismo , Células PC12 , Proteínas/metabolismo , Ratos , Propriedades de Superfície , Titânio/química , Água/química , Zircônio/química
13.
J Proteome Res ; 16(12): 4319-4329, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28828861

RESUMO

The Mitochondrial Human Proteome Project aims at understanding the function of the mitochondrial proteome and its crosstalk with the proteome of other organelles. Being able to choose a suitable and validated enrichment protocol of functional mitochondria, based on the specific needs of the downstream proteomics analysis, would greatly help the researchers in the field. Mitochondrial fractions from ten model cell lines were prepared using three enrichment protocols and analyzed on seven different LC-MS/MS platforms. All data were processed using neXtProt as reference database. The data are available for the Human Proteome Project purposes through the ProteomeXchange Consortium with the identifier PXD007053. The processed data sets were analyzed using a suite of R routines to perform a statistical analysis and to retrieve subcellular and submitochondrial localizations. Although the overall number of identified total and mitochondrial proteins was not significantly dependent on the enrichment protocol, specific line to line differences were observed. Moreover, the protein lists were mapped to a network representing the functional mitochondrial proteome, encompassing mitochondrial proteins and their first interactors. More than 80% of the identified proteins resulted in nodes of this network but with a different ability in coisolating mitochondria-associated structures for each enrichment protocol/cell line pair.


Assuntos
Mitocôndrias/química , Proteoma/fisiologia , Proteômica/normas , Linhagem Celular , Cromatografia Líquida , Humanos , Itália , Proteínas Mitocondriais/análise , Mapas de Interação de Proteínas/fisiologia , Espectrometria de Massas em Tandem
14.
Chembiochem ; 18(1): 119-125, 2017 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-27806190

RESUMO

We present the synthesis of polymeric amino- and guanidinoglycosides prepared by tethering neomycin and guanidinoneomycin to PAMAM dendrimers of generations 2 and 4. The ability of these conjugates to promote cellular uptake of high-molecular-weight cargo is discussed, together with their cytotoxicity and mechanisms of entry. We demonstrate that the presence of multiple guanidinoneomycin carriers on the PAMAM surface plays an important role in promoting cellular uptake of the dendrimers, maintaining the heparan sulfate specificity and negligible cytotoxicity typical of monomeric guanidinoglycoside molecular transporters.


Assuntos
Aminoglicosídeos/química , Dendrímeros/química , Portadores de Fármacos/química , Animais , Biotina/química , Células CHO , Carbocianinas/química , Sobrevivência Celular/efeitos dos fármacos , Cricetinae , Cricetulus , Portadores de Fármacos/farmacologia , Portadores de Fármacos/toxicidade , Endocitose/efeitos dos fármacos
15.
J Assist Reprod Genet ; 34(2): 225-238, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27924460

RESUMO

PURPOSE: The etiology of maternal aging, a common cause of female factor infertility and a rate-limiting step in vitro fertilization (IVF) success, remains still unclear. Proteomic changes responsible for the impaired successful pregnancy outcome after IVF with aged blastocysts have not been yet evaluated. The objective of this prospective study was to employ proteomic techniques and bioinformatic tools to enlight differences at the protein level in blastocoel fluid of aged and younger woman. METHODS: Protein composition of human blastocoel fluid isolated by micromanipulation from 46 blastocysts of women aged <37 years (group A) and 29 of women aged ≥37 years (group B) have been identified by a shotgun proteomic approach based on high-resolution nano-liquid chromatography electrospray-ionization-tandem mass spectrometry (nLC-ESI-MS/MS) using label free for the relative quantification of their expression levels. RESULTS: The proteomic analysis leads to the identification and quantification of 148 proteins; 132 and 116 proteins were identified in groups A and B, respectively. Interestingly, the identified proteins are mainly involved in processes aimed at fine tuning embryo implantation and development. Among the 100 proteins commonly expressed in both groups, 17 proteins are upregulated and 44 downregulated in group B compared to group A. Overall, the analysis identified 33 proteins, which were increased or present only in B while 76 were decreased in B or present only in A. CONCLUSIONS: Data revealed that maternal aging mainly affects blastocyst survival and implantation through unbalancing the equilibrium of the ubiquitin system known to play a crucial role in fine-tuning several aspects required to ensure successful pregnancy outcome.


Assuntos
Transferência Embrionária , Fertilização in vitro , Biossíntese de Proteínas/genética , Proteômica , Adulto , Fatores Etários , Blastocisto/fisiologia , Sobrevivência Celular , Implantação do Embrião/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Idade Materna , Gravidez , Resultado da Gravidez , Espectrometria de Massas em Tandem
16.
J Biol Chem ; 290(41): 24715-26, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26309257

RESUMO

In eukaryotes, nutrient availability and metabolism are coordinated by sensing mechanisms and signaling pathways, which influence a broad set of cellular functions such as transcription and metabolic pathways to match environmental conditions. In yeast, PKA is activated in the presence of high glucose concentrations, favoring fast nutrient utilization, shutting down stress responses, and boosting growth. On the contrary, Snf1/AMPK is activated in the presence of low glucose or alternative carbon sources, thus promoting an energy saving program through transcriptional activation and phosphorylation of metabolic enzymes. The PKA and Snf1/AMPK pathways share common downstream targets. Moreover, PKA has been reported to negatively influence the activation of Snf1/AMPK. We report a new cross-talk mechanism with a Snf1-dependent regulation of the PKA pathway. We show that Snf1 and adenylate cyclase (Cyr1) interact in a nutrient-independent manner. Moreover, we identify Cyr1 as a Snf1 substrate and show that Snf1 activation state influences Cyr1 phosphorylation pattern, cAMP intracellular levels, and PKA-dependent transcription.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica , Proteínas Quinases Ativadas por AMP/metabolismo , Biocatálise , Ativação Enzimática/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Glucose/farmacologia , Mutação , Fenótipo , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Transcrição Gênica/efeitos dos fármacos
17.
Arch Biochem Biophys ; 593: 24-37, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26845023

RESUMO

MICAL1 is a cytoplasmic 119 kDa protein participating in cytoskeleton dynamics through the NADPH-dependent oxidase and F-actin depolymerizing activities of its N-terminal flavoprotein domain, which is followed by calponin homology (CH), LIM domains and a C-terminal region with Pro-, Glu-rich and coiled-coil motifs. MICAL1 and truncated forms lacking the C-terminal, LIM and/or CH regions have been produced and characterized. The CH, LIM and C-terminal regions cause an increase of Km,NADPH exhibited by the NADPH oxidase activity of the flavoprotein domain, paralleling changes in the overall protein charge. The C-terminus also determines a ∼ 10-fold decrease of kcat, revealing its role in establishing an inactive/active conformational equilibrium, which is at the heart of the regulation of MICAL1 in cells. F-actin lowers Km,NADPH (10-50 µM) and increases kcat (10-25 s(-1)) to similar values for all MICAL forms. The apparent Km,actin of MICAL1 is ∼ 10-fold higher than that of the other forms (3-5 µM), reflecting the fact that F-actin binds to the flavoprotein domain in the MICAL's active conformation and stabilizes it. Analyses of the reaction in the presence of F-actin indicate that actin depolymerization is mediated by H2O2 produced by the NADPH oxidase reaction, rather than due to direct hydroxylation of actin methionine residues.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas do Citoesqueleto/química , Citoesqueleto/química , Proteínas com Domínio LIM/química , Actinas/química , Animais , Biocatálise , Humanos , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Cinética , Proteínas dos Microfilamentos , Oxigenases de Função Mista , Modelos Moleculares , NADPH Oxidases/química , Estrutura Terciária de Proteína , Coelhos , Proteínas Recombinantes/química , Viscosidade
18.
J Nanobiotechnology ; 14: 18, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26955876

RESUMO

BACKGROUND: Thanks to mechanotransductive components cells are competent to perceive nanoscale topographical features of their environment and to convert the immanent information into corresponding physiological responses. Due to its complex configuration, unraveling the role of the extracellular matrix is particularly challenging. Cell substrates with simplified topographical cues, fabricated by top-down micro- and nanofabrication approaches, have been useful in order to identify basic principles. However, the underlying molecular mechanisms of this conversion remain only partially understood. RESULTS: Here we present the results of a broad, systematic and quantitative approach aimed at understanding how the surface nanoscale information is converted into cell response providing a profound causal link between mechanotransductive events, proceeding from the cell/nanostructure interface to the nucleus. We produced nanostructured ZrO2 substrates with disordered yet controlled topographic features by the bottom-up technique supersonic cluster beam deposition, i.e. the assembling of zirconia nanoparticles from the gas phase on a flat substrate through a supersonic expansion. We used PC12 cells, a well-established model in the context of neuronal differentiation. We found that the cell/nanotopography interaction enforces a nanoscopic architecture of the adhesion regions that affects the focal adhesion dynamics and the cytoskeletal organization, which thereby modulates the general biomechanical properties by decreasing the rigidity of the cell. The mechanotransduction impacts furthermore on transcription factors relevant for neuronal differentiation (e.g. CREB), and eventually the protein expression profile. Detailed proteomic data validated the observed differentiation. In particular, the abundance of proteins that are involved in adhesome and/or cytoskeletal organization is striking, and their up- or downregulation is in line with their demonstrated functions in neuronal differentiation processes. CONCLUSION: Our work provides a deep insight into the molecular mechanotransductive mechanisms that realize the conversion of the nanoscale topographical information of SCBD-fabricated surfaces into cellular responses, in this case neuronal differentiation. The results lay a profound cell biological foundation indicating the strong potential of these surfaces in promoting neuronal differentiation events which could be exploited for the development of prospective research and/or biomedical applications. These applications could be e.g. tools to study mechanotransductive processes, improved neural interfaces and circuits, or cell culture devices supporting neurogenic processes.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Mecanotransdução Celular/efeitos dos fármacos , Nanopartículas/administração & dosagem , Nanoestruturas/administração & dosagem , Zircônio/administração & dosagem , Animais , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Células PC12 , Ratos , Propriedades de Superfície/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
19.
Glycobiology ; 25(8): 855-68, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25922362

RESUMO

Several studies performed over the last decade have focused on the role of sialylation in the progression of cancer and, in particular, on the association between deregulation of sialidases and tumorigenic transformation. The plasma membrane-associated sialidase NEU3 is often deregulated in colorectal cancer (CRC), and it was shown that this enzyme co-immunoprecipitates in HeLa cells with epidermal growth factor receptor (EGFR), the molecular target of most recent monoclonal antibody-based therapies against CRC. To investigate the role of NEU3 sialidase on EGFR deregulation in CRC, we first collected data on NEU3 gene expression levels from a library of commercial colon cell lines, demonstrating that NEU3 transcription is upregulated in these cell lines. We also found EGFR to be hyperphosphorylated in all cell lines, with the exception of SW620 cells and the CCD841 normal intestinal cell line. By comparing the effects induced by overexpression of either the wild-type or the inactive mutant form of NEU3 on EGFR, we demonstrated that the active form of NEU3 enhanced receptor activation without affecting EGFR mRNA or protein expression. Moreover, through western blots and mass spectrometry analysis, we found that EGFR immunoprecipitated from cells overexpressing active NEU3, unlike the receptor from mock cells and cells overexpressing inactive NEU3, is desialylated. On the whole, our data demonstrate that, besides the already reported indirect EGFR activation through GM3, sialidase NEU3 could also play a role on EGFR activation through its desialylation.


Assuntos
Células Epiteliais/metabolismo , Receptores ErbB/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/genética , Neuraminidase/genética , Processamento de Proteína Pós-Traducional , Linhagem Celular Tumoral , Membrana Celular , Colo/metabolismo , Colo/patologia , Células Epiteliais/patologia , Receptores ErbB/metabolismo , Gangliosídeo G(M3)/metabolismo , Humanos , Modelos Moleculares , Proteínas de Neoplasias/metabolismo , Neuraminidase/metabolismo , Fosforilação , Ácidos Siálicos/metabolismo , Transdução de Sinais , Transcrição Gênica
20.
Biochim Biophys Acta ; 1833(12): 3254-3264, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24084603

RESUMO

Snf1, the yeast AMP-activated kinase homolog, regulates the expression of several genes involved in adaptation to glucose limitation and in response to cellular stresses. We previously demonstrated that Snf1 interacts with Swi6, the regulatory subunit of SBF and MBF complexes, and activates CLB5 transcription. Here we report that, in α-factor synchronized cells in 2% glucose, the loss of the Snf1 catalytic subunit impairs the binding of SBF and MBF complexes and the subsequent recruitment of the FACT complex and RNA Polymerase II to promoters of G1-genes. By using an analog-sensitive allele of SNF1, SNF1(as)(I132G), encoding a protein whose catalytic activity is selectively inhibited in vivo by 2-naphthylmethyl pyrazolopyrimidine 1, we show that the inhibition of Snf1 catalytic activity affects the expression of G1-genes causing a delayed entrance into S phase in cells synchronized in G1 phase by α-factor treatment or by elutriation. Moreover, Snf1 is detected in immune complexes of Rpb1, the large subunit of RNA Polymerase II, and is present at both promoters and coding regions of SBF- and MBF-regulated genes 20min after α-factor release, suggesting a direct role for Snf1 in the activation of the G1-regulon transcription.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Biocatálise/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Genes Fúngicos/genética , Glucose/farmacologia , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Fosfotreonina/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA