Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 22(37): 21042-21058, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32926060

RESUMO

The as-prepared (MSE-NCs sample) and lyophilized (LMSE-NCs sample) polylactic-co-glicolic acid (PLGA) nanocapsules loaded with maghemite (γ-Fe2O3) nanoparticles and selol (Se-based anticancer drug) were investigated by means of dc magnetization, ac susceptibility and electron spin resonance (ESR) measurements over the temperature range of 4-300 K. The magnetic data of the as-synthesized nanocapsules containing only maghemite nanoparticles (M-NCs sample) or selol (SE-NCs sample) were also collected for comparison. The magnetic nanocapsules reveal perfect superparamagnetic (SPM) behavior only around room temperature; at temperatures lower than 200 K the SPM scaling is not observed and all samples behave as interacting superparamagnetic (ISPM) materials. The evolution from the ISPM to the SPM regime is marked by a steady decrease in the hysteretic properties of all samples, with the temperature dependence of the coercivity decreasing slower than the T1/2 behavior predicted for non-interacting SPM particles. The SPM character of the samples is also confirmed by the occurrence of a maximum in the temperature dependence of both real χ'(T) and imaginary χ''(T) components of the ac magnetic susceptibility, which shifts towards higher temperatures with increasing frequency. Moreover, upon decreasing the temperature the ESR signal shifts to lower fields and gradually broadens, following closely the predictions for the ESR of SPM particles. Additionally, an unusual giant diamagnetic response is observed at low temperatures. The ZFC magnetization is found to reverse its direction and becomes diamagnetic, whereas the FC branch remains positive. Even when compared with usual superconductors, the order of the diamagnetic susceptibility for the lyophilized sample (-10-2 emu g-1 Oe-1) is quite considerable. The nanocapsules herein reported and the presented analysis of their magnetic properties we envisage can support the engineering of magnetic nanocapsules for applications in magnetic drug delivery systems and as magnetic hyperthermia inductors in antitumor therapy.


Assuntos
Portadores de Fármacos/química , Compostos Férricos/química , Nanopartículas Magnéticas de Óxido de Ferro/química , Nanocápsulas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Compostos de Selênio/química , Antineoplásicos/química , Fenômenos Magnéticos , Temperatura
2.
Mol Pharm ; 16(3): 1009-1024, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30698450

RESUMO

Despite advances in cancer therapies, glioblastoma multiforme treatment remains inefficient due to the brain-blood barrier (BBB) inhibitory activity and to the low temozolomide (TMZ) chemotherapeutic selectivity. To improve therapeutic outcomes, in this work we propose two strategies, (i) photodynamic therapy (PDT) as adjuvant treatment and (ii) engineering of multifunctional theranostic/targeted nanoparticles ( m-NPs) that integrate biotin as a targeting moiety with rhodamine-B as a theranostic agent in pluronic P85/F127 copolymers. These smart m-NPs can surmount the BBB and coencapsulate multiple cargoes under optimized conditions. Overall, the present study conducts a rational m-NP design, characterization, and optimizes the formulation conditions. Confocal microscopy studies on T98-G, U87-MG, and U343 glioblastoma cells and on NIH-3T3 normal fibroblast cells show that the m-NPs and the encapsulated drugs are selectively taken up by tumor cells presenting a broad intracellular distribution. The formulations display no toxicity in the absence of light and are not toxic to healthy cells, but they exert a robust synergic action in cancer cells in the case of concomitant PDT/TMZ treatment, especially at low TMZ concentrations and higher light doses, as demonstrated by nonlinear dose-effect curves based on the Chou-Talalay method. The results evidenced different mechanisms of action related to the disjoint cell cycle phases at the optimal PDT/TMZ ratio. This effect favors synergism between the PDT and the chemotherapy with TMZ, enhances the antiproliferative effect, and overcomes cross-resistance mechanisms. These results point out that m-NP-based PDT adjuvant therapy is a promising strategy to improve TMZ-based glioblastoma multiforme treatments.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Quimioterapia Adjuvante/métodos , Composição de Medicamentos/métodos , Glioblastoma/tratamento farmacológico , Nanopartículas/química , Temozolomida/uso terapêutico , Verteporfina/uso terapêutico , Animais , Neoplasias Encefálicas/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Sinergismo Farmacológico , Glioblastoma/patologia , Humanos , Camundongos , Microscopia de Força Atômica , Microscopia Confocal , Células NIH 3T3 , Tamanho da Partícula , Poloxaleno/química , Rodaminas/química
3.
Lasers Surg Med ; 49(8): 756-762, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28598516

RESUMO

INTRODUCTION: Thermal ablation of tumors by Nd:YAG laser has been growing as a multidisciplinary subspecialty defined as laser-induced thermal therapy (LITT), and has been increasingly accepted as a minimally invasive method for palliation of advanced or recurrent cancer. Previous studies have shown that adjuvant chemotherapy can potentiate laser thermal ablation of tumors leading to improved palliation in advanced cancer patients. OBJECTIVE: Evaluate nephrotoxicity by early markers of renal function in treating head and neck cancer using intra-tumor injections of cisplatin combined with laser-induced thermal therapy (CDDP-LITT). METHODS: Nine patients with recurrent head and neck tumors were treated by CDDP-LITT in order to determine nephrotoxicity related to this synergistic association. Among the tests requested to detect early were creatinine, magnesium, creatinine clearance, serum urea-BUN, type I urine, and proteinuria at 24 hours. RESULTS: Twelve recurrent tumors in nine patients were treated by CDDP-LITT. Pain was the major complaint (four patients), while other symptoms included dysphagia, dyspnea, bleeding, and difficulties in chewing. Fifteen laser procedures were performed and maximal CDDP dose was 50 mg. None of the markers for nephrotoxicity showed changes at these levels of CDDP intra-tumor injections. CONCLUSION: This initial experience with (CDDP-LITT) indicates both safety and therapeutic potential for palliation of advanced head and neck cancer. However, safety and feasibility must be confirmed by longer follow-up and further escalation of CDDP doses in a Phase I study to determine maximum tolerated dose (MTD) and demonstrate tangible benefits for patients. Lasers Surg. Med. 49:756-762, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Antineoplásicos/efeitos adversos , Cisplatino/efeitos adversos , Neoplasias de Cabeça e Pescoço/terapia , Lasers de Estado Sólido/uso terapêutico , Cuidados Paliativos/métodos , Insuficiência Renal/induzido quimicamente , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/uso terapêutico , Cisplatino/uso terapêutico , Terapia Combinada , Feminino , Seguimentos , Humanos , Injeções Intralesionais , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Insuficiência Renal/diagnóstico , Resultado do Tratamento
4.
J Nanobiotechnology ; 12: 36, 2014 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-25223611

RESUMO

BACKGROUND: Type I collagen is an abundant natural polymer with several applications in medicine as matrix to regenerate tissues. Silver nanoparticles is an important nanotechnology material with many utilities in some areas such as medicine, biology and chemistry. The present study focused on the synthesis of silver nanoparticles (AgNPs) stabilized with type I collagen (AgNPcol) to build a nanomaterial with biological utility. Three formulations of AgNPcol were physicochemical characterized, antibacterial activity in vitro and cell viability assays were analyzed. AgNPcol was characterized by means of the following: ultraviolet-visible spectroscopy, dynamic light scattering analysis, Fourier transform infrared spectroscopy, atomic absorption analysis, transmission electron microscopy and of X-ray diffraction analysis. RESULTS: All AgNPcol showed spherical and positive zeta potential. The AgNPcol at a molar ratio of 1:6 showed better characteristics, smaller hydrodynamic diameter (64.34 ± 16.05) and polydispersity index (0.40 ± 0.05), and higher absorbance and silver reduction efficiency (0.645 mM), when compared with the particles prepared in other mixing ratios. Furthermore, these particles showed antimicrobial activity against both Staphylococcus aureus and Escherichia coli and no toxicity to the cells at the examined concentrations. CONCLUSIONS: The resulted particles exhibited favorable characteristics, including the spherical shape, diameter between 64.34 nm and 81.76 nm, positive zeta potential, antibacterial activity, and non-toxicity to the tested cells (OSCC).


Assuntos
Antibacterianos/farmacologia , Colágeno Tipo I/farmacologia , Nanopartículas Metálicas/química , Prata/farmacologia , Antibacterianos/química , Linhagem Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Química Sintética , Colágeno Tipo I/administração & dosagem , Colágeno Tipo I/química , Avaliação Pré-Clínica de Medicamentos/métodos , Difusão Dinâmica da Luz , Escherichia coli/efeitos dos fármacos , Humanos , Nanopartículas Metálicas/administração & dosagem , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Transmissão , Prata/administração & dosagem , Prata/química , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Difração de Raios X
5.
Heliyon ; 10(12): e32808, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38975186

RESUMO

For decades, animal models have been the standard approach in drug research and development, as they are required by regulations in the transition from preclinical to clinical trials. However, there is growing ethical and scientific concern regarding these trials, as 80 % of the therapeutic potential observed in pre-clinical studies are often unable to be replicated, despite demonstrating efficacy and safety. In response to this, Tissue Engineering has emerged as a promising alternative that enables the treatment of various diseases through the production of biological models for advanced biological assays or through the direct development of tissue repairs or replacements. One of the promising applications of Tissue Engineering is the development of three-dimensional (3D) models for in vitro tests, replacing the need for in vivo animal models. In this study, 3D skin equivalents (TSE) were produced and used as an in vitro model to test photobiostimulation using curcumin-loaded nanocapsules. Photodynamic biostimulation therapy uses photodynamic processes to generate small amounts of reactive oxygen species (ROS), which can activate important biological effects such as cell differentiation, modulation of inflammatory processes and contribution to cell regeneration. The PLGA nanocapsules (NC) used in the study were synthesized through a preformed polymer deposition method, exhibiting particle size <200 nm, Zeta potential >|30| and polydispersity index between 0.5 and 0.3. Atomic force microscopy analyzes confirmed that the particle size was <200 nm, with a spherical morphology and a predominantly smooth and uniform surface. The NC biocompatibility assay did not demonstrate cytotoxicity for the concentrations tested (2.5-25 µg mL-1).The in vitro release assay showed a slow and sustained release characteristic of the nanocapsules, and cellular uptake assays indicated a significant increase in cellular internalization of the curcumin-loaded nanostructure. Monolayer photobiostimulation studies revealed an increase in cell viability of the HDFn cell line (viability 134 %-228 %) for all LED fluences employed at λ = 450 nm (150, 300, and 450 mJ cm-2). Additionally, the scratch assays, monitoring in vitro scar injury, demonstrated more effective effects on cell proliferation with the fluence of 300 mJ cm-2. Staining of TSE with hematoxylin and eosin showed the presence of cells with different morphologies, confirming the presence of fibroblasts and keratinocytes. Immunohistochemistry using KI-67 revealed the presence of proliferating cells in TSE after irradiation with LED λ = 450 nm (150, 300, and 450 mJ cm-2).

6.
Lasers Med Sci ; 27(3): 575-84, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21809069

RESUMO

Photodynamic therapy (PDT) is a technique employed in the treatment of several superficial infections, such as caries. PDT uses a non-toxic drug termed photosensitizer (PS) followed by light irradiation. The cytotoxic effects of the therapy are related to the production of reactive species produced after light activation of a photosensitizer, which reacts with surrounding molecules and disrupts several of the cell's functions. Within this context, this study aimed to develop a clinical protocol involving PDT application mediated by aluminum-chloride-phthalocyanine (AlClPc) entrapped in cationic liposomes against cariogenic bacteria in caries lesions. Cationic liposomes were used to delivery AlClPc preferentially to bacterial cells due to the strong anionic superficial charges of these cell types. The results are represented in two fundamental steps: (1) in vitro evaluation of AlClPc delivery to cariogenic bacteria and pulp cells, as well as its potential phototoxicity; (2) a clinical study involving volunteer patients that were treated with the PDT protocol mediated by AlClPc-cationic liposome. The main results showed that the AlClPc-cationic liposome was preferentially absorbed by bacterial cells compared to eukaryotic dental pulp cells, and it was efficient in the reduction of microbial load from bacterial cultures. In addition, the clinical study showed a mean reduction of 82% of total bacterial in the treated cavities after PDT application. Taken together, the results presented in this study showed that the antimicrobial PDT protocol mediated by cationic liposomes containing AlClPc is safety for clinical application and is efficient in the reduction of bacterial load in caries lesions.


Assuntos
Cárie Dentária/terapia , Desinfecção/métodos , Fotoquimioterapia/métodos , Adulto , Animais , Carga Bacteriana , Cátions , Células Cultivadas , Criança , Cloretos , Protocolos Clínicos , Cárie Dentária/microbiologia , Preparo da Cavidade Dentária/métodos , Polpa Dentária/citologia , Polpa Dentária/efeitos dos fármacos , Humanos , Técnicas In Vitro , Indóis/uso terapêutico , Lipossomos , Camundongos , Células NIH 3T3 , Compostos Organometálicos/uso terapêutico , Fármacos Fotossensibilizantes/uso terapêutico
7.
Pharmaceutics ; 14(11)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36365096

RESUMO

mTOR is a signaling pathway involved in cell survival, cell stress response, and protein synthesis that may be a key point in sepsis-induced cardiac dysfunction. Curcumin has been reported in vitro as an mTOR inhibitor compound; however, there are no studies demonstrating this effect in experimental sepsis. Thus, this study aimed to evaluate the action of curcumin on the mTOR pathway in the heart of septic mice. Free curcumin (FC) and nanocurcumin (NC) were used, and samples were obtained at 24 and 120 h after sepsis. Histopathological and ultrastructural analysis showed that treatments with FC and NC reduced cardiac lesions caused by sepsis. Our main results demonstrated that curcumin reduced mTORC1 and Raptor mRNA at 24 and 120 h compared with the septic group; in contrast, mTORC2 mRNA increased at 24 h. Additionally, the total mTOR mRNA expression was reduced at 24 h compared with the septic group. Our results indicate that treatment with curcumin and nanocurcumin promoted a cardioprotective response that could be related to the modulation of the mTOR pathway.

8.
J Nanobiotechnology ; 9: 11, 2011 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-21443799

RESUMO

BACKGROUND: Rhodium (II) citrate (Rh(2)(H(2)cit)(4)) has significant antitumor, cytotoxic, and cytostatic activity on Ehrlich ascite tumor. Although toxic to normal cells, its lower toxicity when compared to carboxylate analogues of rhodium (II) indicates (Rh(2)(H(2)cit)(4)) as a promising agent for chemotherapy. Nevertheless, few studies have been performed to explore this potential. Superparamagnetic particles of iron oxide (SPIOs) represent an attractive platform as carriers in drug delivery systems (DDS) because they can present greater specificity to tumor cells than normal cells. Thus, the association between Rh(2)(H(2)cit)(4) and SPIOs can represent a strategy to enhance the former's therapeutic action. In this work, we report the cytotoxicity of free rhodium (II) citrate (Rh(2)(H(2)cit)(4)) and rhodium (II) citrate-loaded maghemite nanoparticles or magnetoliposomes, used as drug delivery systems, on both normal and carcinoma breast cell cultures. RESULTS: Treatment with free Rh(2)(H(2)cit)(4) induced cytotoxicity that was dependent on dose, time, and cell line. The IC(50) values showed that this effect was more intense on breast normal cells (MCF-10A) than on breast carcinoma cells (MCF-7 and 4T1). However, the treatment with 50 µM Rh(2)(H(2)cit)(4)-loaded maghemite nanoparticles (Mag(h)-Rh(2)(H(2)cit)(4)) and Rh(2)(H(2)cit)(4)-loaded magnetoliposomes (Lip-Magh-Rh(2)(H(2)cit)(4)) induced a higher cytotoxicity on MCF-7 and 4T1 than on MCF-10A (p < 0.05). These treatments enhanced cytotoxicity up to 4.6 times. These cytotoxic effects, induced by free Rh(2)(H(2)cit)(4), were evidenced by morphological alterations such as nuclear fragmentation, membrane blebbing and phosphatidylserine exposure, reduction of actin filaments, mitochondrial condensation and an increase in number of vacuoles, suggesting that Rh(2)(H(2)cit)(4) induces cell death by apoptosis. CONCLUSIONS: The treatment with rhodium (II) citrate-loaded maghemite nanoparticles and magnetoliposomes induced more specific cytotoxicity on breast carcinoma cells than on breast normal cells, which is the opposite of the results observed with free Rh(2)(H(2)cit)(4) treatment. Thus, magnetic nanoparticles represent an attractive platform as carriers in Rh(2)(H(2)cit)(4) delivery systems, since they can act preferentially in tumor cells. Therefore, these nanopaticulate systems may be explored as a potential tool for chemotherapy drug development.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Carcinoma/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Nanopartículas de Magnetita/uso terapêutico , Neoplasias Mamárias Animais/tratamento farmacológico , Ródio/uso terapêutico , Animais , Antineoplásicos/efeitos adversos , Apoptose/efeitos dos fármacos , Mama/efeitos dos fármacos , Mama/patologia , Mama/ultraestrutura , Neoplasias da Mama/patologia , Neoplasias da Mama/ultraestrutura , Carcinoma/patologia , Carcinoma/ultraestrutura , Linhagem Celular , Feminino , Humanos , Lipossomos/efeitos adversos , Lipossomos/uso terapêutico , Nanopartículas de Magnetita/ultraestrutura , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/patologia , Glândulas Mamárias Animais/ultraestrutura , Neoplasias Mamárias Animais/patologia , Neoplasias Mamárias Animais/ultraestrutura , Camundongos , Ródio/efeitos adversos
9.
J Nanosci Nanotechnol ; 11(5): 4046-55, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21780404

RESUMO

A variety of nanostructures are being investigated as functional drug carriers for treatment of a wide range of diseases, most notably cardiovascular defects, autoimmune diseases, and cancer. The aim of this present contribution is to evaluate potentially applicable nanomaterials in the diagnosis and treatment of cancer due to their photophysical and photobiological properties and complexation behavior. The delivery systems consisted of chloro-aluminum phthalocyanine associated with beta-cyclodextrin and hydroxypropyl-beta-cyclodextrin. The preparation of the complex and its stoichiometry in an ethanol/buffer (3:1) solution were studied by spectroscopic techniques, which were defined as 1:2. The inclusion complex in the nanometer scale was observed on the basis of changes to the spectroscopic properties. The singlet oxygen production and complex photophysical parameters were determined by measuring luminescence at 1270 nm and by steady state and time resolved spectroscopic, respectively. The preparation of the complex was tested and analyzed with regard to cellular damage by visible light activation. The inclusion complex showed a higher singlet oxygen quantum yield compared with other systems and other photoactive dyes. There was also a reduction in the fluorescence quantum yield compared with the results obtained for zinc phthalocyanine in organic medium. The results reported clearly that the inclusion complex chloro-aluminum phthalocyanine/cyclodextrin showed some changes in its spectroscopy properties leading to better biodistribution and biocompatibility with a potential application in photodynamic therapy, especially in the case of neoplasy. Additionally, it also has non-oncological applications as a drug delivery system.

10.
J Nanosci Nanotechnol ; 11(3): 2308-14, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21449386

RESUMO

Itraconazole (ITZ) is a drug used to treat various fungal infections and may cause side effects. The aim of this study was to develop and evaluate the in vitro activity of DMSA-PLGA nanoparticles loaded with ITZ against Paracoccidioides brasiliensis, as well as their cytotoxicity. Nanoparticles were prepared using the emulsification-evaporation technique and characterized by their encapsulation efficiency, morphology (TEM), size (Nanosight) and charge (zeta potential). Antifungal efficacy in P. brasiliensis was determined by minimal inhibition concentration (MIC), and cytotoxicity using MTT assay. ITZ was effectively incorporated in the PLGA-DMSA nanoparticles with a loading efficiency of 72.8 +/- 3.50%. The shape was round with a solid polymeric structure, and a size distribution of 174 +/- 86 nm (Average +/- SD). The particles were negatively charged. ITZ-NANO presented antifungal inhibition (MIC = 6.25 ug/mL) against P. brasiliensis and showed lower in vitro cytotoxicity than free drug (ITZ).


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Itraconazol/administração & dosagem , Itraconazol/toxicidade , Ácido Láctico/química , Nanocápsulas/química , Paracoccidioides/efeitos dos fármacos , Ácido Poliglicólico/química , Succímero/química , Animais , Antifúngicos/administração & dosagem , Antifúngicos/química , Antifúngicos/toxicidade , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Itraconazol/química , Camundongos , Nanocápsulas/ultraestrutura , Paracoccidioides/citologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
11.
Photodiagnosis Photodyn Ther ; 34: 102273, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33798749

RESUMO

Antimicrobial Photodynamic Therapy (A-PDT) is a modern and non-invasive therapeutic modality. Nanostructures like the polymeric nanocapsules (NC) has proved to be a system that has enormous potential to improve current antimicrobial therapeutic practice. NC of Zinc phenyl-thio-phthalocyanine and Amphotericin B association (NC/ZnS4Pc + AMB) built with poly(lactide-co-glycolide) (PLGA) 50:50 using the preformed polymer interfacial deposition method were developed at a 0.05 mg mL- 1 theoretical concentration to improve antifungal activity with two actives association and assistance from PDTa. It showed an average particle diameter of 253.8 ±â€¯17.3, an average polydispersity index of 0.36 ±â€¯0.01, and a negative Zeta potential average of -31.03 ±â€¯5.54 for 158 days. UV-vis absorption and emission spectroscopy analyses did not show changes in photophysical properties in the steady-state of NC/ZnS4Pc + AMB counterparts free ZnS4Pc. The encapsulation percentage of actives was 89.24 % and 7.40 % for ZnS4Pc and AMB, respectively. Cell viability assay using NIH/3T3 ATCC® CRL-1658 ™ cells line showed no cytotoxicity for the concentrations tested. The photodynamic activity assay using NC/ZnS4Pc + AMB diluted showed fungal toxicity against Candida albicans yeast with energetic fluences of 12 J.cm-2 and 25 J.cm-2 by a decrease in cell viability. The MFC assay demonstrated a fungistatic activity for the conditions employed in the PDTa assay. The results show that NC/ZnS4Pc + AMB is a promising nanomaterial for antimicrobial inactivation using PDT.


Assuntos
Nanocápsulas , Fotoquimioterapia , Anfotericina B , Antifúngicos/farmacologia , Candida albicans , Indóis , Isoindóis , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Polímeros , Zinco
12.
Chem Phys Lipids ; 239: 105113, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34216586

RESUMO

1,8-cineole is a monoterpene commonly used by the food, cosmetic, and pharmaceutical industries owing to its flavor and fragrances properties. In addition, this bioactive monoterpene has demonstrated bactericidal and fungicidal activities. However, such activities are limited due to its low aqueous solubility and stability. This study aimed to develop nanoemulsion containing cineole and assess its stability and antibacterial activity in this context. The spontaneous emulsification method was used to prepare nanoemulsion (NE) formulations (F1, F2, F3, F4, and F5). Following the development of NE formulations, we chose the F1 formulation that presented an average droplet size (in diameter) of about 100 nm with narrow size distribution (PdI <0.2) and negative zeta potential (∼ - 35 mV). According to the analytical centrifugation method with photometric detection, F1 and F5 formulations were considered the most stable NE with lower droplet migration velocities. In addition, F1 formulation showed high incorporation efficiency (> 80 %) and TEM analyses demonstrated nanosized oil droplets with irregular spherical shapes and without any aggregation tendency. Antibacterial activity assessment showed that F1 NE was able to enhance the cineole action against Staphylococcus aureus, Enterococcus faecalis, and Streptococcus pyogenes. Therefore, using a simple and reproducible method of low energy emulsification we designed a stable nanoemulsion containing 1,8-cineole with improved antibacterial activity against Gram-positive strains.


Assuntos
Antibacterianos/química , Emulsões/química , Eucaliptol/química , Nanoestruturas/química , Antibacterianos/farmacologia , Estabilidade de Medicamentos , Enterococcus faecalis/efeitos dos fármacos , Eucaliptol/farmacologia , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Staphylococcus aureus/efeitos dos fármacos
13.
J Photochem Photobiol B ; 216: 112146, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33601256

RESUMO

BACKGROUND AND AIM: Oncological photodynamic therapy (PDT) relies on photosensitizers (PSs) to photo-oxidatively destroy tumor cells. Currently approved PSs yield satisfactory results in superficial and easy-to-access tumors but are less suited for solid cancers in internal organs such as the biliary system and the pancreas. For these malignancies, second-generation PSs such as metallated phthalocyanines are more appropriate. Presently it is not known which of the commonly employed metallated phtahlocyanines, namely aluminum phthalocyanine (AlPC) and zinc phthalocyanine (ZnPC) as well as their tetrasulfonated derivatives AlPCS4 and ZnPCS4, is most cytotoxic to tumor cells. This study therefore employed an attritional approach to ascertain the best metallated phthalocyanine for oncological PDT in a head-to-head comparative analysis and standardized experimental design. METHODS: ZnPC and AlPC were encapsulated in PEGylated liposomes. Analyses were performed in cultured A431 cells as a template for tumor cells with a dysfunctional P53 tumor suppressor gene and EGFR overexpression. First, dark toxicity was assessed as a function of PS concentration using the WST-1 and sulforhodamine B assay. Second, time-dependent uptake and intracellular distribution were determined by flow cytometry and confocal microscopy, respectively, using the intrinsic fluorescence of the PSs. Third, the LC50 values were established for each PS at 671 nm and a radiant exposure of 15 J/cm2 following 1-h PS exposure. Finally, the mode of cell death as a function of post-PDT time and cell cycle arrest at 24 h after PDT were analyzed. RESULTS: In the absence of illumination, AlPC and ZnPC were not toxic to cells up to a 1.5-µM PS concentration and exposure for up to 72 h. Dark toxicity was noted for AlPCS4 at 5 µM and ZnPCS4 at 2.5 µM. Uptake of all PSs was observed as early as 1 min after PS addition to cells and increased in amplitude during a 2-h incubation period. After 60 min, the entire non-nuclear space of the cell was photosensitized, with PS accumulation in multiple subcellular structures, especially in case of AlPC and AlPCS4. PDT of cells photosensitized with ZnPC, AlPC, and AlPCS4 yielded LC50 values of 0.13 µM, 0.04 µM, and 0.81 µM, respectively, 24 h post-PDT (based on sulforhodamine B assay). ZnPCS4 did not induce notable phototoxicity, which was echoed in the mode of cell death and cell cycle arrest data. At 4 h post-PDT, the mode of cell death comprised mainly apoptosis for ZnPC and AlPC, the extent of which was gradually exacerbated in AlPC-photosensitized cells during 8 h. ZnPC-treated cells seemed to recover at 8 h post-PDT compared to 4 h post-PDT, which had been observed before in another cell line. AlPCS4 induced considerable necrosis in addition to apoptosis, whereby most of the cell death had already manifested at 2 h after PDT. During the course of 8 h, necrotic cell death transitioned into mainly late apoptotic cell death. Cell death signaling coincided with a reduction in cells in the G0/G1 phase (ZnPC, AlPC, AlPCS4) and cell cycle arrest in the S-phase (ZnPC, AlPC, AlPCS4) and G2 phase (ZnPC and AlPC). Cell cycle arrest was most profound in cells that had been photosensitized with AlPC and subjected to PDT. CONCLUSIONS: Liposomal AlPC is the most potent PS for oncological PDT, whereas ZnPCS4 was photodynamically inert in A431 cells. AlPC did not induce dark toxicity at PS concentrations of up to 1.5 µM, i.e., > 37 times the LC50 value, which is favorable in terms of clinical phototoxicity issues. AlPC photosensitized multiple intracellular loci, which was associated with extensive, irreversible cell death signaling that is expected to benefit treatment efficacy and possibly immunological long-term tumor control, granted that sufficient AlPC will reach the tumor in vivo. Given the differential pharmacokinetics, intracellular distribution, and cell death dynamics, liposomal AlPC may be combined with AlPCS4 in a PS cocktail to further improve PDT efficacy.


Assuntos
Antineoplásicos/química , Portadores de Fármacos/química , Indóis/química , Lipossomos/química , Fármacos Fotossensibilizantes/química , Antineoplásicos/farmacologia , Apoptose/efeitos da radiação , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Relação Dose-Resposta à Radiação , Liberação Controlada de Fármacos , Humanos , Indóis/farmacologia , Isoindóis , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Relação Estrutura-Atividade , Fatores de Tempo
15.
J Nanosci Nanotechnol ; 10(1): 569-73, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20352893

RESUMO

In this study, the photodynamic action of liposomes (LP) and nanocapsules (NC) containing Chloroaluminum phthalocyanine (CIAIPc), on the human melanoma cell (WM 1552C), was assessed. The light source was setup at 672 nm, which corresponds to the maximum absorption wavelength of the CIAIPc. Both colloidal carriers presented size in nanometric scale as well as negative zeta potential. The cellular damage was light dose dependent ranging from 30% of cell death at 70 mJ x cm-2 to 90% of death at 700 mJ x cm(-2). However, the photocytotoxic effect of LP at 70 mJ x cm(-2) was slightly more efficient to induce cellular death than NC formulation. At 140 mJ x cm(-2), and 700 mJ x cm(-2) both nanocarriers were equally efficient to induce cellular damage. Therefore, in the present work, the maximum phototoxic effect was obtained with 700 mJ x cm(-2) of light dose, in combination with 0.29 microg x mL(-1) of CIAIPc encapsulated into LP and NC. The cells were also positive to annexin V, after the PDT treatment with LP and NC, showing that one of the mechanisms of cellular death involved is apoptosis. In summary, the potential of LP and NC as a drug delivery system, in Photodynamic Therapy (PDT) against melanoma, has been confirmed using a lower concentration of the photosensitizer and lower light doses than that applied in current protocols. This is an innovative proposal to treat melanoma cell lines that until now have not received the benefit of the PDT protocol for treatment.


Assuntos
Indóis/administração & dosagem , Lipossomos/administração & dosagem , Melanoma/tratamento farmacológico , Nanocápsulas/administração & dosagem , Compostos Organometálicos/administração & dosagem , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/administração & dosagem , Análise de Variância , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Humanos
16.
Photodiagnosis Photodyn Ther ; 31: 101815, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32407889

RESUMO

Photodynamic therapy has been applied for the treatment of many diseases, especially skin diseases. However, poor aqueous solubility and toxicity of some photosensitizer drugs are the main disadvantages for their direct clinical applications. Thus, biotechnology and nanotechnology are important tools in the development of new ways of obtaining photoactive compounds that are biocompatible. We investigated the potential of a new nanostructured photosensitizer, an anthraquinone derivative produced by biotechnological process; then we associated nanotechnology to obtain a nanostructured anthraquinone active molecule. For this, it was prepared a classical nanocapsule formulations containing poly(lactide-co-glycolide) (PLGA) coating for encapsulation of anthraquinone derivative. These formulations were characterized by their physicochemical, morphological, photophysical properties, and stability. We performed in vitro biocompatibility and photodynamic activity assays of free and nanostructured anthraquinone. Nanocapsule formulations containing anthraquinone derivative showed a nanometric profile with particle size around 250 nm, negative zeta potential around -30 mV, and partially monodisperse. Besides that, characteristic spherical morphology of nanocapsules and homogeneous particle surface were observed by AFM analyses. The in vitro biocompatibility assay showed absence of cytotoxicity for all tested RD/NC concentrations and also for unloaded/NC in NIH3T3 cells. In vitro photoactivation assay using NIH3T3 cells showed that nanocapsules promoted greater drug uptake by NIH3T3 cells, around of 87%, of cell death compared to free drug showed around 48% of cell death. The anthraquinone derivative showed potential for use in PDT. Besides the association with nanocapsules improved cell uptake of photosensitizer resulting in increased cell death compared to free anthraquinone.


Assuntos
Nanocápsulas , Fotoquimioterapia , Animais , Antraquinonas/farmacologia , Biotecnologia , Camundongos , Células NIH 3T3 , Tamanho da Partícula , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia
17.
Nanomedicine (Lond) ; 15(10): 1019-1036, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32264766

RESUMO

Aim: Nano-5-aminolevulic acid (NanoALA)-mediated photodynamic therapy (PDT), an oil-in-water polymeric nanoemulsion of ALA, was evaluated in a murine model of breast cancer. Materials & methods: Analysis of ALA-derived protoporphyrin IX production and acute toxicity test, biocompatibility and treatment efficacy, and long-term effect of NanoALA-PDT on tumor progression were performed. Results: The nanoformulation favored the prodrug uptake by tumor cells in a shorter time (1.5 h). As a result, the adverse effects were negligible and the response rates for primary mammary tumor control were significantly improved. Tumor progression was slower after NanoALA-PDT treatment, providing longer survival. Conclusion: NanoALA is a good proactive drug candidate for PDT against cancer potentially applied as adjuvant/neoadjuvant intervention strategy for breast cancer.


Assuntos
Ácido Aminolevulínico/uso terapêutico , Neoplasias da Mama , Fotoquimioterapia , Animais , Neoplasias da Mama/tratamento farmacológico , Morte Celular , Linhagem Celular Tumoral , Portadores de Fármacos , Humanos , Camundongos , Nanomedicina , Fármacos Fotossensibilizantes/uso terapêutico
18.
Anim Reprod Sci ; 222: 106609, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33002660

RESUMO

To facilitate transcervical artificial insemination in sheep, the effects of local treatment with α1-adrenergic receptor antagonists on cervix dilation and hemodynamics were evaluated. Ewes (n = 7) were subjected to oestrous synchronisation every 40 days and assigned to treatments in a Latin square experimental design (seven animals × seven periods) with a factorial treatment arrangement (A × B), Factors A (prazosin or tamsulosin) and B (1, 2, or 4 mg/animal). Ewes of the six treatment groups (P1, P2, P4, T1, T2, and T4) were administered α1-adrenergic receptor antagonists while those of the control group (CG) were administered only α1-adrenergic antagonist carrier agent. Distance that the transcervical catheter penetrated without cervical resistance, mean arterial pressure, and uterine artery dopplerfluxometry were evaluated before and after 30 min, 1, 2, 4, 8, and 10 h of treatment. Catheter penetration distance was greater in ewes of the T4 and P4 groups (P < 0.01), with there being a positive correlation between dose and distance (r = 0.243). The penetration distance was similar (P = 0.84) for treated groups, with the greatest penetration occurring 2, 4, and 6 h after treatment (P < 0.01). The passage into the uterine lumen was greater (P = 0.013) in ewes of the P4 (17.9 %) and T4 (19.6 %) groups. There were no effects on blood pressure or uterine blood flow (P> 0.05). These preliminary results indicate there are benefits of treatment with 4 mg/animal of tamsulosin or prazosin in catheter passage through the sheep cervix 2-6 h after administration without hemodynamic effects.


Assuntos
Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Colo do Útero/efeitos dos fármacos , Dilatação/veterinária , Inseminação Artificial/veterinária , Ovinos/fisiologia , Animais , Pressão Sanguínea , Colo do Útero/fisiologia , Dilatação/métodos , Relação Dose-Resposta a Droga , Sincronização do Estro/métodos , Feminino , Inseminação Artificial/métodos , Inseminação Artificial/normas , Fluxometria por Laser-Doppler/veterinária , Prazosina/farmacologia , Distribuição Aleatória , Tansulosina/farmacologia , Útero/irrigação sanguínea
19.
J Antimicrob Chemother ; 63(3): 526-33, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19151037

RESUMO

OBJECTIVES: The present study reports on the preparation and testing of a desoxycholate amphotericin B (D-AMB) sustained delivery system based on poly(lactic-co-glycolic acid) (PLGA) and dimercaptosuccinic acid (DMSA) polymeric blends (Nano-D-AMB) aimed at reducing the number of AMB administrations required to treat mycosis. METHODS: BALB/c mice were infected with the yeast Paracoccidioides brasiliensis intravenously to mimic the chronic form of paracoccidioidomycosis. At 30 days post-infection, the animals were treated with Nano-D-AMB [6 mg/kg of encapsulated D-AMB, intraperitoneally (ip), interval of 72 h] or D-AMB (2 mg/kg, ip, interval of 24 h). Drug efficacy was investigated by the fungal burden recovery from tissues. Toxicity was assessed by renal and hepatic biochemical parameters, physical appearance of the animals and haematological investigation. The control groups used were non-infected and the infected mice mock treated with PBS. RESULTS: Nano-D-AMB presented results comparable to free D-AMB, with a marked antifungal efficacy. The Nano-D-AMB-treated group presented lower loss of body weight and absence of stress sign (piloerection and hypotrichosis) observed after D-AMB treatment. No renal [blood urea nitrogen (BUN), creatinine] or hepatic (pyruvic and oxalacetic glutamic transaminases) biochemical abnormalities were found. The micronucleus assay showed no significant differences in both the micronucleus frequency and percentage of polychromatic erythrocytes for Nano-D-AMB, indicating the absence of genotoxicity and cytotoxic effects. CONCLUSIONS: The D-AMB-coated PLGA-DMSA nanoparticle showed antifungal efficacy, fewer undesirable effects and a favourable extended dosing interval. Nano-D-AMB comprises an AMB formulation able to lessen the number of drug administrations. Further studies would elucidate whether Nano-D-AMB would be useful to treat systemic fungal infections such as paracoccidioidomycosis, candidiasis, aspergillosis and cryptococcosis.


Assuntos
Anfotericina B/uso terapêutico , Ácido Desoxicólico/uso terapêutico , Ácido Láctico/uso terapêutico , Nanopartículas/uso terapêutico , Paracoccidioides/efeitos dos fármacos , Paracoccidioidomicose/tratamento farmacológico , Ácido Poliglicólico/uso terapêutico , Succímero/uso terapêutico , Anfotericina B/administração & dosagem , Anfotericina B/efeitos adversos , Animais , Peso Corporal , Medula Óssea/efeitos dos fármacos , Medula Óssea/patologia , Medula Óssea/fisiologia , Contagem de Colônia Microbiana , Ácido Desoxicólico/administração & dosagem , Ácido Desoxicólico/efeitos adversos , Combinação de Medicamentos , Feminino , Rim/efeitos dos fármacos , Rim/fisiologia , Ácido Láctico/administração & dosagem , Ácido Láctico/efeitos adversos , Fígado/efeitos dos fármacos , Fígado/microbiologia , Fígado/fisiologia , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/administração & dosagem , Nanopartículas/efeitos adversos , Ácido Poliglicólico/administração & dosagem , Ácido Poliglicólico/efeitos adversos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Succímero/administração & dosagem , Succímero/efeitos adversos , Resultado do Tratamento
20.
J Liposome Res ; 19(1): 49-58, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19515007

RESUMO

The cellular uptake and antimycobacterial activity of usnic acid (UA) and usnic acid-loaded liposomes (UA-LIPOs) were assessed on J774 macrophages. The minimal inhibitory concentration (MIC) and the minimal bactericidal concentration (MBC) of UA and UA-LIPO against Mycobacterium tuberculosis were determined. Concentrations required to inhibit 50% of cell proliferation (IC(50)) were 22.5 (+/-0.60) and 12.5 (+/-0.26) microg/ml, for UA and UA-LIPO, respectively. The MICs of UA and UA-LIPO were 6.5 and 5.8 microg/mL, respectively. The MBC of UA-LIPO was twice as low (16 microg/mL) as that of UA (32 microg/mL). An improvement in the intracellular uptake of UA-LIPO was found (21.6 x 10(4) +/- 28.3 x 10(2) c.p.s), in comparison with UA (9.5 x 10(4) +/- 11.4 x 10(2) c.p.s). In addition, UA-LIPO remains much longer inside macrophages (30 hours). All data obtained from the encapsulation of usnic acid into liposomes as a drug delivery system (DDS) indicate a strong interaction between UA-liposomes and J774 macrophages, thereby facilitating UA penetration into cells. Considering such a process as ruling the Mycobacterium-transfection by magrophages, we could state that associating UA with this DDS leads to an improvement in its antimycobacterial activity.


Assuntos
Antituberculosos/farmacologia , Benzofuranos/farmacologia , Macrófagos/microbiologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Tuberculose/tratamento farmacológico , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Lipossomos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA