Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Carbohydr Polym ; 339: 122251, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823918

RESUMO

In this study, the disulfide-linked hyaluronic acid (HA) hydrogels were optimised for potential application as a scaffold in tissue engineering through the Quality by Design (QbD) approach. For this purpose, HA was first modified by incorporating the cysteine moiety into the HA backbone, which promoted the formation of disulfide cross-linked HA hydrogel at physiological pH. Utilising a Design of Experiments (DoE) methodology, the critical factors to achieve stable biomaterials, i.e. the degree of HA substitution, HA molecular weight, and coupling agent ratio, were explored. To establish a design space, the DoE was performed with 65 kDa, 138 kDa and 200 kDa HA and variable concentrations of coupling agent to optimise conditions to obtain HA hydrogel with improved rheological properties. Thus, HA hydrogel with a 12 % degree of modification, storage modulus of ≈2321 Pa and loss modulus of ≈15 Pa, was achieved with the optimum ratio of coupling agent. Furthermore, biocompatibility assessments in C28/I2 chondrocyte cells demonstrated the non-toxic nature of the hydrogel, underscoring its potential for tissue regeneration. Our findings highlight the efficacy of the QbD approach in designing HA hydrogels with tailored properties for biomedical applications.


Assuntos
Materiais Biocompatíveis , Condrócitos , Dissulfetos , Ácido Hialurônico , Hidrogéis , Reologia , Engenharia Tecidual , Ácido Hialurônico/química , Hidrogéis/química , Hidrogéis/síntese química , Dissulfetos/química , Condrócitos/efeitos dos fármacos , Condrócitos/citologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/síntese química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio
2.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39065784

RESUMO

In recent years, solid dosage forms have gained interest in pediatric therapy because they can provide valuable benefits in terms of dose accuracy and stability. Particularly for orodispersible films (ODFs), the literature evidences increased acceptability and dose flexibility. Among the various available technologies for obtaining ODFs, such as solvent casting, hot-melt extrusion, and ink printing technologies, the solvent-free preparation methods exhibit significant advantages. This study investigated Vacuum Compression Molding (VCM) as a solvent-free manufacturing method for the preparation of flexible-dose pediatric orodispersible films. The experimental approach focused on selecting the appropriate plasticizer and ratios of the active pharmaceutical ingredient, diclofenac sodium, followed by the study of their impacts on the mechanical properties, disintegration time, and drug release profile of the ODFs. Additional investigations were performed to obtain insights regarding the solid-state properties. The ODFs obtained by VCM displayed adequate quality in terms of their critical characteristics. Therefore, this proof-of-concept study shows how VCM could be utilized as a standalone method for the production of small-scale ODFs, enabling the customization of doses to meet the individual needs of pediatric patients.

3.
Braz. J. Pharm. Sci. (Online) ; 53(4): e00266, 2017. tab, graf, ilus
Artigo em Inglês | LILACS | ID: biblio-889430

RESUMO

ABSTRACT The aim of this study was to formulate and prepare compression-coated tablets for colonic release (CR-tablets), and to evaluate the bioavailability of ketoprofen following the administration of a single dose from mini-tablets with immediate release (IR-tablets) compared to CR-tablets. CR-tablets were prepared based on time-controlled hydroxypropylmethylcellulose K100M inner compression-coating and pH-sensitive Eudragit® L 30D-55 outer film-coating. The clinical bioavailability study consisted of two periods, in which two formulations were administered to 6 volunteers, according to a randomized cross-over design. The apparent cumulative absorption amount of ketoprofen was estimated by plasma profile deconvolution. CR-tablets were able to delay ketoprofen's release. Compared to IR-tablets used as reference, for the CR-tablets the maximum plasma concentration (Cmax) was lower (4920.33±1626.71 ng/mL vs. 9549.50±2156.12 ng/mL for IR-tablets) and the time needed to reach Cmax (tmax) was 5.33±1.63 h for CR-tablets vs. 1.33±0.88 h for IR-tablets. In vitro-in vivo comparison of the apparent cumulative absorption amount of ketoprofen showed similar values for the two formulations. Therefore, the obtained pharmacokinetic parameters and the in vitro-in vivo comparison demonstrated the reliability of the developed pharmaceutical system and the fact that it is able to avoid the release of ketoprofen in the first part of the digestive tract.


Assuntos
Humanos , Adulto , Comprimidos/análise , Cetoprofeno/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA