Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Eur Radiol ; 32(3): 1833-1842, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34668994

RESUMO

OBJECTIVES: To compare the diagnostic value of ultrashort echo time (UTE) magnetic resonance imaging (MRI) for the lung versus the gold standard computed tomography (CT) and two T1-weighted MRI sequences in children. METHODS: Twenty-three patients with proven oncologic disease (14 male, 9 female; mean age 9.0 + / - 5.4 years) received 35 low-dose CT and MRI examinations of the lung. The MRI protocol (1.5-T) included the following post-contrast sequences: two-dimensional (2D) incoherent gradient echo (GRE; acquisition with breath-hold), 3D volume interpolated GRE (breath-hold), and 3D high-resolution radial UTE sequences (performed during free-breathing). Images were evaluated by considering image quality as well as distinct diagnosis of pulmonary nodules and parenchymal areal opacities with consideration of sizes and characterisations. RESULTS: The UTE technique showed significantly higher overall image quality, better sharpness, and fewer artefacts than both other sequences. On CT, 110 pulmonary nodules with a mean diameter of 4.9 + / - 2.9 mm were detected. UTE imaging resulted in a significantly higher detection rate compared to both other sequences (p < 0.01): 76.4% (84 of 110 nodules) for UTE versus 60.9% (67 of 110) for incoherent GRE and 62.7% (69 of 110) for volume interpolated GRE sequences. The detection of parenchymal areal opacities by the UTE technique was also significantly higher with a rate of 93.3% (42 of 45 opacities) versus 77.8% (35 of 45) for 2D GRE and 80.0% (36 of 45) for 3D GRE sequences (p < 0.05). CONCLUSION: The UTE technique for lung MRI is favourable in children with generally high diagnostic performance compared to standard T1-weighted sequences as well as CT. Key Points • Due to the possible acquisition during free-breathing of the patients, the UTE MRI sequence for the lung is favourable in children. • The UTE technique reaches higher overall image quality, better sharpness, and lower artefacts, but not higher contrast compared to standard post-contrast T1-weighted sequences. • In comparison to the gold standard chest CT, the detection rate of small pulmonary nodules small nodules ≤ 4 mm and subtle parenchymal areal opacities is higher with the UTE imaging than standard T1-weighted sequences.


Assuntos
Imageamento Tridimensional , Imageamento por Ressonância Magnética , Adolescente , Suspensão da Respiração , Criança , Pré-Escolar , Feminino , Humanos , Pulmão/diagnóstico por imagem , Masculino , Tomografia Computadorizada por Raios X
2.
Biochim Biophys Acta Gen Subj ; 1862(6): 1389-1400, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29545133

RESUMO

BACKGROUND: Endoglin (CD105) is overexpressed on tumor cells and tumor vasculatures, making it a potential target for diagnostic imaging and therapy of different neoplasms. Therefore, studies on nanocarrier systems designed for endoglin-directed diagnostic and drug delivery purposes would expose the feasibility of targeting endoglin with therapeutics. METHODS: Liposomes carrying high concentrations of a near-infrared fluorescent dye in the aqueous interior were prepared by the lipid film hydration and extrusion procedure, then conjugated to single chain antibody fragments either selective for murine endoglin (termed mEnd-IL) or directed towards human endoglin (termed hEnd-IL). A combination of Dynamic Light Scattering, electron microscopy, cell binding and uptake assays, confocal microscopy and in vivo fluorescence imaging of mice bearing xenografted human breast cancer and human fibrosarcoma models were implemented to elucidate the potentials of the liposomes. RESULTS: The mEnd-IL and hEnd-IL were highly selective for the respective murine- and human endoglin expressing cells in vitro and in vivo. Hence, the hEnd-IL bound distinctly to the tumor cells and enabled suitable fluorescence imaging of the tumors, whereas the mEnd-IL bound the tumor vasculature, but also to the liver, kidney and lung vasculature of mice. CONCLUSIONS: The work highlights key differences between targeting vascular (murine) and neoplastic (human) endoglin in animal studies, and suggests that the hEnd-IL can serve as a delivery system that targets human endoglin overexpressed in pathological conditions. GENERAL SIGNIFICANCE: The endoglin-targeting liposomes presented herewith represent strategic tools for the future implementation of endoglin-directed neoplastic and anti-angiogenic therapies.


Assuntos
Neoplasias da Mama/metabolismo , Endoglina/metabolismo , Fibrossarcoma/metabolismo , Fluorescência , Lipossomos , Anticorpos de Cadeia Única/imunologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Animais , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Endoglina/imunologia , Feminino , Fibrossarcoma/imunologia , Fibrossarcoma/patologia , Corantes Fluorescentes , Humanos , Camundongos , Imagem Óptica/métodos , Anticorpos de Cadeia Única/administração & dosagem , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
3.
BMC Biotechnol ; 17(1): 8, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28100205

RESUMO

BACKGROUND: Preclinical research implementing fluorescence-based approaches is inevitable for drug discovery and technology. For example, a variety of contrast agents developed for biomedical imaging are usually evaluated in cell systems and animal models based on their conjugation to fluorescent dyes. Biodistribution studies of excised organs are often performed by macroscopic imaging, whereas the subcellular localization though vital, is often neglected or further validated by histological procedures. Available systems used to define the subcellular biodistribution of contrast agents such as intravital microscopes or ex vivo histological analysis are expensive and not affordable by the majority of researchers, or encompass tedious and time consuming steps that may modify the contrast agents and falsify the results. Thus, affordable and more reliable approaches to study the biodistribution of contrast agents are required. We developed fluorescent immunoliposomes specific for human fibroblast activation protein and murine endoglin, and used macroscopic fluorescence imaging and confocal microscopy to determine their biodistribution and subcellular localization in freshly excised mice organs at different time points post intravenous injection. RESULTS: Near infrared fluorescence macroscopic imaging revealed key differences in the biodistribution of the respective immunoliposomes at different time points post injection, which correlated to the first-pass effect as well as the binding of the probes to molecular targets within the mice organs. Thus, a higher accumulation and longer retention of the murine endoglin immunoliposomes was seen in the lungs, liver and kidneys than the FAP specific immunoliposomes. Confocal microscopy showed that tissue autofluorescence enables detection of organ morphology and cellular components within freshly excised, non-processed organs, and that fluorescent probes with absorption and emission maxima beyond the tissue autofluorescence range can be easily distinguished. Hence, the endoglin targeting immunoliposomes retained in some organs could be detected in the vascular endothelia cells of the organs. CONCLUSIONS: The underlying work represents a quick, effective and more reliable setup to validate the macroscopic and subcellular biodistribution of contrast agents in freshly excised animal organs. The approach will be highly beneficial to many researchers involved in nanodrug design or in fluorescence-based studies on disease pathogenesis.


Assuntos
Anticorpos Monoclonais/imunologia , Lipossomos/imunologia , Microscopia de Fluorescência/métodos , Imagem Molecular/métodos , Frações Subcelulares/imunologia , Vísceras/imunologia , Animais , Feminino , Técnicas In Vitro , Taxa de Depuração Metabólica/imunologia , Camundongos , Camundongos Nus , Microscopia Confocal/métodos , Especificidade de Órgãos/imunologia , Distribuição Tecidual/imunologia
4.
Data Brief ; 20: 1048-1052, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30225321

RESUMO

The underlying data demonstrates that the expression of endoglin in murine melanoma cells influences melanin production in the cells. Also, the data shows that melanin production is further increased when the cells are subcutaneously implanted in mice models and that the high melanin production prevents detection of the cells by fluorescence imaging. The processed data presented herein is related to a research article by Tansi et al. (2018) entitled "Endoglin based in vivo near-infrared fluorescence imaging of tumor models in mice using activatable liposomes".

5.
Acta Biomater ; 54: 281-293, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28347861

RESUMO

Molecular targeting plays a significant role in cancer diagnosis and therapy. However, the heterogeneity of tumors is a limiting obstacle for molecular targeting. Consequently, clinically approved drug delivery systems such as liposomes still rely on passive targeting to tumors, which does not address tumor heterogeneity. In this work, we therefore designed and elucidated the potentials of activatable bispecific targeted liposomes for simultaneous detection of fibroblast activation protein (FAP) and the human epidermal growth factor receptor 2 (HER2). The bispecific liposomes were encapsulated with fluorescence-quenched concentrations of the near-infrared fluorescent dye, DY-676-COOH, making them detectable solely post processing within target cells. The liposomes were endowed with a combination of single chain antibody fragments specific for FAP and HER2 respectively, or with the FAP single chain antibody fragment in combination with Trastuzumab, which is specific for HER2. The Trastuzumab based bispecific formulation, termed Bi-FAP/Tras-IL revealed delivery of the encapsulated dye into the nuclei of HER2 expressing cancer cells and caused cell death at significantly higher rates than the free Trastuzumab. Furthermore, fluorescence imaging and live microscopy of tumor models in mice substantiated the delivery of the encapsulated cargo into the nuclei of target tumor cells and tumor stromal fibroblasts. Hence, they convey potentials to address tumor plasticity, to improve targeted cancer therapy and reduce Trastuzumab resistance in the future. STATEMENT OF SIGNIFICANCE: This work demonstrates the design of activatable bispecific liposomes aimed to target HER2, a poor prognosis tumor marker in many tumor types, and fibroblast activation protein (FAP), a universal tumor marker overexpressed on tumor fibroblasts and pericytes of almost all solid tumors. Encapsulating liposomes with a quenched concentration of a NIRF dye which only fluoresced after cellular degradation and activation enabled reliable visualization of the destination of the cargo in cells and animal studies. Conjugating single chain antibody fragments directed to FAP, together with Trastuzumab, a humanized monoclonal antibody for HER2 resulted in the activatable bispecific liposomes. In animal models of xenografted human breast tumors, the remarkable ability of the bispecific probes to simultaneously deliver the encapsulated dye into the nuclei of target tumor cells and tumor fibroblasts could be demonstrated. Hence, the bispecific probes represent model tools with high significance to address tumor heterogeneity and manage Trastuzumab resistance in the future.


Assuntos
Antineoplásicos Imunológicos , Gelatinases/antagonistas & inibidores , Proteínas de Membrana/antagonistas & inibidores , Neoplasias Experimentais/tratamento farmacológico , Anticorpos de Cadeia Única , Trastuzumab , Animais , Antineoplásicos Imunológicos/química , Antineoplásicos Imunológicos/farmacologia , Endopeptidases , Feminino , Gelatinases/metabolismo , Humanos , Lipossomos , Células MCF-7 , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Nus , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Serina Endopeptidases/metabolismo , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/farmacologia , Trastuzumab/química , Trastuzumab/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Data Brief ; 9: 143-8, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27642620

RESUMO

The underlying data demonstrates that fibroblast activation protein (FAP) paves the way for fibrosarcoma cells, which require the proteolysis of the extracellular matrix (ECM) and basement membranes to intravasate from implanted subcutaneous primary tumors into blood vessels, be transported to distant organs where they extravasate from the blood vessels, reattach and proliferate to metastases. The data additionally shows that FAP, when overexpressed on fibrosarcoma cells induces their invasion and formation of spontaneous metastases in multiple organs, particularly after subcutaneous co-implantation of the FAP-expressing and wildtype fibrosarcoma. The raw and processed data presented herein is related to a research article entitled "Potential of activatable FAP-targeting immunoliposomes in intraoperative imaging of spontaneous metastases" (F.L. Tansi, R. Rüger, C. Böhm, R.E. Kontermann, U.K. Teichgraeber, A. Fahr, I. Hilger, 2016) [1]. Furthermore, evidence for the detection of FAP-expressing tumor cells and cells of the tumor stroma by activatable FAP-targeting liposomes is presented in this dataset.

7.
Biomaterials ; 88: 70-82, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26945457

RESUMO

Despite intensive research and medical advances met, metastatic disease remains the most common cause of death in cancer patients. This results from late diagnosis, poor therapeutic response and undetected micrometastases and tumor margins during surgery. One approach to overcome these challenges involves fluorescence imaging, which exploits the properties of fluorescent probes for diagnostic detection of molecular structures at the onset of transformation and for intraoperative detection of metastases and tumor margins in real time. Considering these benefits, many contrast agents suitable for fluorescence imaging have been reported. However, most reports only demonstrate the detection of primary tumors and not the detection of metastases or their application in models of image-guided surgery. In this work, we demonstrate the influence of fibroblast activation protein (FAP) on the metastatic potential of fibrosarcoma cells and elucidate the efficacy of activatable FAP-targeting immunoliposomes (FAP-IL) for image-guided detection of the spontaneous metastases in mice models. Furthermore, we characterized the biodistribution and cellular localization of the liposomal fluorescent components in mice organs and traced their excretion over time in urine and feces. Taken together, activatable FAP-IL enhances intraoperative imaging of metastases. Their high accumulation in metastases, subsequent localization in the bile canaliculi and liver kupffer cells and suitable excretion in feces substantiates their potency as contrast agents for intraoperative imaging.


Assuntos
Fibrossarcoma/patologia , Gelatinases/metabolismo , Lipossomos/metabolismo , Lipossomos/farmacocinética , Proteínas de Membrana/metabolismo , Imagem Molecular/métodos , Metástase Neoplásica/diagnóstico , Serina Endopeptidases/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Endopeptidases , Feminino , Fibrossarcoma/metabolismo , Humanos , Camundongos , Camundongos Nus , Metástase Neoplásica/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA