Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Eur J Immunol ; 52(8): 1228-1242, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35491946

RESUMO

ICAP-1 regulates ß1-integrin activation and cell adhesion. Here, we used ICAP-1-null mice to study ICAP-1 potential involvement during immune cell development and function. Integrin α4ß1-dependent adhesion was comparable between ICAP-1-null and control thymocytes, but lack of ICAP-1 caused a defective single-positive (SP) CD8+ cell generation, thus, unveiling an ICAP-1 involvement in SP thymocyte development. ICAP-1 bears a nuclear localization signal and we found it displayed a strong nuclear distribution in thymocytes. Interestingly, there was a direct correlation between the lack of ICAP-1 and reduced levels in SP CD8+ thymocytes of Runx3, a transcription factor required for CD8+ thymocyte generation. In the spleen, ICAP-1 was found evenly distributed between cytoplasm and nuclear fractions, and ICAP-1-/- spleen T and B cells displayed upregulation of α4ß1-mediated adhesion, indicating that ICAP-1 negatively controls their attachment. Furthermore, CD3+ - and CD19+ -selected spleen cells from ICAP-1-null mice showed reduced proliferation in response to T- and B-cell stimuli, respectively. Finally, loss of ICAP-1 caused a remarkable decrease in marginal zone B- cell frequencies and a moderate increase in follicular B cells. Together, these data unravel an ICAP-1 involvement in the generation of SP CD8+ thymocytes and in the control of marginal zone B-cell numbers.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Linfócitos B , Linfócitos T CD8-Positivos , Ativação Linfocitária , Timócitos , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Linfócitos B/citologia , Linfócitos T CD8-Positivos/citologia , Diferenciação Celular , Integrina beta1/metabolismo , Camundongos , Camundongos Knockout , Baço/citologia , Timócitos/citologia , Timo/citologia
2.
J Pathol ; 252(1): 29-40, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32501543

RESUMO

The interaction of multiple myeloma (MM) cells with the bone marrow (BM) microenvironment promotes MM cell retention, survival, and resistance to different anti-MM agents, including proteasome inhibitors (PIs) such as bortezomib (BTZ). The α4ß1 integrin is a main adhesion receptor mediating MM cell-stroma interactions and MM cell survival, and its expression and function are downregulated by BTZ, leading to inhibition of cell adhesion-mediated drug resistance (CAM-DR) and MM cell apoptosis. Whether decreased α4ß1 expression and activity are maintained or recovered upon development of resistance to BTZ represents an important question, as a potential rescue of α4ß1 function could boost MM cell survival and disease progression. Using BTZ-resistant MM cells, we found that they not only rescue their α4ß1 expression, but its levels were higher than in parental cells. Increased α4ß1 expression in resistant cells correlated with enhanced α4ß1-mediated cell lodging in the BM, and with disease progression. BTZ-resistant MM cells displayed enhanced NF-κB pathway activation relative to parental counterparts, which contributed to upregulated α4 expression and to α4ß1-dependent MM cell adhesion. These data emphasize the upregulation of α4ß1 expression and function as a key event during resistance to BTZ in MM, which might indirectly contribute to stabilize this resistance, as stronger MM cell attachment to BM stroma will regain CAM-DR and MM cell growth and survival. Finally, we found a strong correlation between high ITGB1 (integrin ß1) expression in MM and poor progression-free survival (PFS) and overall survival (OS) during treatment of MM patients with BTZ and IMIDs, and combination of high ITGB1 levels and presence of the high-risk genetic factor amp1q causes low PFS and OS. These results unravel a novel prognostic value for ITGB1 in myeloma. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Antineoplásicos/administração & dosagem , Bortezomib/administração & dosagem , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Integrina alfa4beta1/metabolismo , Mieloma Múltiplo/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Integrina alfa4beta1/genética , Camundongos , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Microambiente Tumoral
3.
Blood ; 128(18): 2241-2252, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27625360

RESUMO

Tumor-associated macrophages (TAM) are important components of the multiple myeloma (MM) microenvironment that support malignant plasma cell survival and resistance to therapy. It has been proposed that macrophages (MØ) retain the capacity to change in response to stimuli that can restore their antitumor functions. Here, we investigated several approaches to reprogram MØ as a novel therapeutic strategy in MM. First, we found tumor-limiting and tumor-supporting capabilities for monocyte-derived M1-like MØ and M2-like MØ, respectively, when mixed with MM cells, both in vitro and in vivo. Multicolor confocal microscopy revealed that MM-associated MØ displayed a predominant M2-like phenotype in the bone marrow of MM patient samples, and a high expression of the pro-M2 cytokine macrophage migration inhibitory factor (MIF). To reprogram the protumoral M2-like MØ present in MM toward antitumoral M1-like MØ, we tested the pro-M1 cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) plus blockade of the M2 cytokines macrophage colony-stimulating factor or MIF. The combination of GM-CSF plus the MIF inhibitor 4-iodo-6-phenyl-pyrimidine achieved the best reprogramming responses toward an M1 profile, at both gene and protein expression levels, as well as remarkable tumoricidal effects. Furthermore, this combined treatment elicited MØ-dependent therapeutic responses in MM xenograft mouse models, which were linked to upregulation of M1 and reciprocal downregulation of M2 MØ markers. Our results reveal the therapeutic potential of reprogramming MØ in the context of MM.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Técnicas de Reprogramação Celular/métodos , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Macrófagos/patologia , Mieloma Múltiplo/imunologia , Animais , Modelos Animais de Doenças , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Microscopia Confocal , Pirimidinas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Immunity ; 31(6): 953-64, 2009 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-20005136

RESUMO

Lymphocyte integrins mediate cell arrest on endothelium during immune surveillance after activation by chemokine-stimulated inside-out signals. Here we show that a Vav1-talin complex in T cells is a key target for chemokine-triggered inside-out signaling leading to integrin alpha4beta1 activation. Thus, Vav1 dissociation from talin was required to generate high-affinity alpha4beta1 conformations. Assembly of the Vav1-talin complex required PtdIns(4,5)P(2), which was provided by talin-bound phosphatidylinositol phosphate kinase Igamma. Chemokine-promoted Vav1 dissociation from talin followed an initial increase in talin binding to alpha4beta1. This process was dependent on ZAP-70, which binds to and phosphorylates Vav1 in the complex, leading to further alpha4beta1 activation and cell adhesion strengthening. Moreover, Vav1-talin dissociation was needed for Rac1 activation, thus indicating that alpha4beta1 and Rac1 activation can be coupled by chemokine-stimulated ZAP-70 function. Our data suggest that Vav1 might function as a repressive adaptor of talin that must dissociate from alpha4beta1-talin complexes for efficient integrin activation.


Assuntos
Integrina alfa4beta1/metabolismo , Proteínas Proto-Oncogênicas c-vav/metabolismo , Linfócitos T/imunologia , Talina/metabolismo , Proteína-Tirosina Quinase ZAP-70/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Células Cultivadas , Quimiocina CXCL12/farmacologia , Humanos , Fosfotransferases/metabolismo , Proteínas Proto-Oncogênicas c-vav/efeitos dos fármacos , Interferência de RNA , Transdução de Sinais , Linfócitos T/efeitos dos fármacos , Talina/efeitos dos fármacos , Transfecção , Molécula 1 de Adesão de Célula Vascular/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
5.
J Biol Chem ; 291(40): 21053-21062, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27481944

RESUMO

Chemokine stimulation of integrin α4ß1-dependent T lymphocyte adhesion is a key step during lymphocyte trafficking. A central question regarding α4ß1 function is how its lateral mobility and organization influence its affinity and avidity following cell stimulation with chemokines and/or ligands. Using single particle tracking and superresolution imaging approaches, we explored the lateral mobility and spatial arrangement of individual α4ß1integrins on T cells exposed to different activating stimuli. We show that CXCL12 stimulation leads to rapid and transient α4ß1activation, measured by induction of the activation epitope recognized by the HUTS-21 anti-ß1antibody and by increased talin-ß1 association. CXCL12-dependent α4ß1 activation directly correlated with restricted lateral diffusion and integrin immobilization. Moreover, co-stimulation by CXCL12 together with soluble VCAM-1 potentiated integrin immobilization with a 5-fold increase in immobile integrins compared with unstimulated conditions. Our data indicate that docking by talin of the chemokine-activated α4ß1 to the actin cytoskeleton favors integrin immobilization, which likely facilitates ligand interaction and increased adhesiveness. Superresolution imaging showed that the nanoscale organization of high-affinity α4ß1 remains unaffected following chemokine and/or ligand addition. Instead, newly activated α4ß1 integrins organize on the cell membrane as independent units without joining pre-established integrin sites to contribute to cluster formation. Altogether, our results provide a rationale to understand how the spatiotemporal organization of activated α4ß1 integrins regulates T lymphocyte adhesion.


Assuntos
Quimiocina CXCL12/metabolismo , Integrina alfa4beta1/metabolismo , Linfócitos T/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , Adesão Celular/fisiologia , Linhagem Celular , Integrina alfa4beta1/genética , Transporte Proteico/fisiologia , Talina/genética , Talina/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética
6.
J Cell Sci ; 125(Pt 22): 5338-52, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22946047

RESUMO

Cell migration and invasion require regulated turnover of integrin-dependent adhesion complexes. Rap1-GTP-interacting adaptor molecule (RIAM) is an adaptor protein that mediates talin recruitment to the cell membrane, and whose depletion leads to defective melanoma cell migration and invasion. In this study, we investigated the potential involvement of RIAM in focal adhesion (FA) dynamics. RIAM-depleted melanoma and breast carcinoma cells displayed an increased number, size and stability of FAs, which accumulated centrally at the ventral cell surface, a phenotype caused by defective FA disassembly. Impairment in FA disassembly resulting from RIAM knockdown correlated with deficient integrin-dependent mitogen-activated protein kinase kinase (MEK)-Erk1/2 activation and, importantly, overexpression of constitutively active MEK resulted in rescue of FA disassembly and recovery of cell invasion. Furthermore, RIAM-promoted Ras homologue gene family, member A (RhoA) activation following integrin engagement was needed for subsequent Erk1/2 activation. In addition, RhoA overexpression partially rescued the FA phenotype in RIAM-depleted cells, also suggesting a functional role for RhoA downstream of RIAM, but upstream of Erk1/2. RIAM knockdown also led to enhanced phosphorylation of paxillin Tyr118 and Tyr31. However, expression of phosphomimetic and nonphosphorylatable mutants at these paxillin residues indicated that paxillin hyperphosphorylation is a subsequent consequence of the blockade of FA disassembly, but does not cause the FA phenotype. RIAM depletion also weakened the association between FA proteins, suggesting that it has important adaptor roles in the correct assembly of adhesion complexes. Our data suggest that integrin-triggered, RIAM-dependent MEK activation represents a key feedback event required for efficient FA disassembly, which could help explain the role of RIAM in cell migration and invasion.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adesões Focais/metabolismo , MAP Quinase Quinase 1/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas de Membrana/metabolismo , Animais , Linhagem Celular Tumoral , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Melanoma/enzimologia , Melanoma/patologia , Camundongos , Modelos Biológicos , Paxilina/metabolismo , Fosforilação , Fosfotirosina/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 12/metabolismo , Regulação para Cima , Proteína rhoA de Ligação ao GTP/metabolismo , Quinases da Família src/metabolismo
7.
J Pathol ; 229(1): 36-48, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22711564

RESUMO

Myeloma cell adhesion dependent on α4ß1 integrin is crucial for the progression of multiple myeloma (MM). The α4ß1-dependent myeloma cell adhesion is up-regulated by the chemokine CXCL12, and pharmacological blockade of the CXCL12 receptor CXCR4 leads to defective myeloma cell homing to bone marrow (BM). Sphingosine-1-phosphate (S1P) regulates immune cell trafficking upon binding to G-protein-coupled receptors. Here we show that myeloma cells express S1P1, a receptor for S1P. We found that S1P up-regulated the α4ß1-mediated myeloma cell adhesion and transendothelial migration stimulated by CXCL12. S1P promoted generation of high-affinity α4ß1 that efficiently bound the α4ß1 ligand VCAM-1, a finding that was associated with S1P-triggered increase in talin-ß1 integrin association. Furthermore, S1P cooperated with CXCL12 for enhancement of α4ß1-dependent adhesion strengthening and spreading. CXCL12 and S1P activated the DOCK2-Rac1 pathway, which was required for stimulation of myeloma cell adhesion involving α4ß1. Moreover, in vivo analyses indicated that S1P contributes to optimizing the interactions of MM cells with the BM microvasculture and for their lodging inside the bone marrow. The regulation of α4ß1-dependent adhesion and migration of myeloma cells by CXCL12-S1P combined activities might have important consequences for myeloma disease progression.


Assuntos
Medula Óssea/metabolismo , Adesão Celular , Quimiocina CXCL12/metabolismo , Integrina alfa4beta1/metabolismo , Lisofosfolipídeos/metabolismo , Mieloma Múltiplo/metabolismo , Esfingosina/análogos & derivados , Células Estromais/metabolismo , Migração Transendotelial e Transepitelial , Animais , Medula Óssea/irrigação sanguínea , Medula Óssea/imunologia , Medula Óssea/patologia , Forma Celular , Técnicas de Cocultura , Proteínas Ativadoras de GTPase , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Integrina alfa5beta1/metabolismo , Células K562 , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mieloma Múltiplo/genética , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/patologia , Interferência de RNA , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/metabolismo , Transdução de Sinais , Esfingosina/metabolismo , Células Estromais/imunologia , Células Estromais/patologia , Talina/metabolismo , Fatores de Tempo , Transfecção , Células Tumorais Cultivadas , Molécula 1 de Adesão de Célula Vascular/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
8.
J Immunol ; 187(3): 1264-72, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21705617

RESUMO

Chemokines rapidly and transiently upregulate α4ß1 and αLß2 integrin-mediated adhesion during T lymphocyte extravasation by activating Gα-dependent inside-out signaling. To limit and terminate Gα-mediated signaling, cells can use several mechanisms, including the action of regulator of G protein signaling (RGS) proteins, which accelerate the GTPase activity of Gα subunits. Using human T cells silenced for or overexpressing RGS10, we show in this article that RGS10 functions as an inhibitor of Gα(i)-dependent, chemokine-upregulated T cell adhesion mediated by α4ß1 and αLß2. Shear stress-dependent detachment and cell spreading analyses revealed that RGS10 action mainly targets the adhesion strengthening and spreading phases of α4ß1-mediated cell attachment. Associated with these observations, chemokine-stimulated Vav1-Rac1 activation was longer sustained and of higher intensity in RGS10-silenced T cells, or inhibited in cells overexpressing RGS10. Of importance, expression of constitutively activated Rac1 forms in cells overexpressing RGS10 led to the rescue of CXCL12-stimulated adhesion to VCAM-1 to levels similar to those in control transfectants. Instead, adhesion under flow conditions, soluble binding experiment, flow cytometry, and biochemical analyses revealed that the earlier chemokine-triggered integrin activation step was mostly independent of RGS10 actions. The data strongly suggest that RGS10 opposes activation by chemokines of the Vav1-Rac1 pathway in T cells, leading to repression of adhesion strengthening mediated by α4ß1. In addition to control chemokine-upregulated T cell attachment, RGS10 also limited adhesion-independent cell chemotaxis and activation of cdc42. These results identify RGS10 as a key molecule that contributes to the termination of Gα-dependent signaling during chemokine-activated α4ß1- and αLß2-dependent T cell adhesion.


Assuntos
Antígeno CD11a/fisiologia , Antígenos CD18/fisiologia , Quimiocinas/antagonistas & inibidores , Regulação para Baixo/imunologia , Integrina alfa4/fisiologia , Integrina beta1/fisiologia , Proteínas RGS/fisiologia , Linfócitos T/imunologia , Antígeno CD11a/metabolismo , Antígenos CD18/metabolismo , Adesão Celular/imunologia , Células Cultivadas , Quimiocinas/fisiologia , Quimiotaxia de Leucócito/imunologia , Humanos , Integrina alfa4/metabolismo , Integrina beta1/metabolismo , Células Jurkat , Transdução de Sinais/imunologia , Linfócitos T/citologia , Linfócitos T/metabolismo , Regulação para Cima/imunologia
9.
Nucleic Acids Res ; 39(1): 347-58, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20817927

RESUMO

SMG-9 is part of a protein kinase complex, SMG1C, which consists of the SMG-1 kinase, SMG-8 and SMG-9. SMG1C mediated phosphorylation of Upf1 triggers nonsense-mediated mRNA decay (NMD), a eukaryotic surveillance pathway that detects and targets for degradation mRNAs harboring premature translation termination codons. Here, we have characterized SMG-9, showing that it comprises an N-terminal 180 residue intrinsically disordered region (IDR) followed by a well-folded C-terminal domain. Both domains are required for SMG-1 binding and the integrity of the SMG1C complex, whereas the C-terminus is sufficient to interact with SMG-8. In addition, we have found that SMG-9 assembles in vivo into SMG-9:SMG-9 and, most likely, SMG-8:SMG-9 complexes that are not constituents of SMG1C. SMG-9 self-association is driven by interactions between the C-terminal domains and surprisingly, some SMG-9 oligomers are completely devoid of SMG-1 and SMG-8. We propose that SMG-9 has biological functions beyond SMG1C, as part of distinct SMG-9-containing complexes. Some of these complexes may function as intermediates potentially regulating SMG1C assembly, tuning the activity of SMG-1 with the NMD machinery. The structural malleability of IDRs could facilitate the transit of SMG-9 through several macromolecular complexes.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Subunidades Proteicas/química , Códon sem Sentido , Células HeLa , Humanos , Multimerização Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo
10.
EJHaem ; 4(3): 631-638, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37601846

RESUMO

The α4ß1 integrin regulates the trafficking of multiple myeloma (MM) cells and contributes to MM disease progression. MicroRNAs (miRNAs) can have both tumor suppressor and oncogenic roles and thus are key controllers of tumor evolution, and have been associated with different phases of MM pathogenesis. Using small RNAseq analysis, we show here that α4ß1-dependent MM cell adhesion regulates the expression of forty different miRNAs, therefore expanding our current view of the α4ß1 involvement in MM cell biology. Specific upregulation of miR-324-5p and miR-331-3p in cells attached to α4ß1 ligands was confirmed upon silencing the α4 integrin subunit, and their increased levels found to be dependent on Erk1/2- and PI3K-Akt-, but not Src-dependent signaling. Enhanced miR-324-5p expression upon α4ß1-mediated MM cell adhesion aimed the hedgehog (Hh) component SMO, revealing that the miR-324-5p-SMO module represents a α4ß1-regulated pathway that could control Hh-dependent cellular responses in myeloma. Our results open new therapy research avenues around the α4ß1 contribution to MM progression that deserve to be investigated.

11.
J Biol Chem ; 286(21): 18492-504, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21454517

RESUMO

The Mig-10/RIAM/lamellipodin (MRL) family member Rap1-GTP-interacting adaptor molecule (RIAM) interacts with active Rap1, a small GTPase that is frequently activated in tumors such as melanoma and prostate cancer. We show here that RIAM is expressed in metastatic human melanoma cells and that both RIAM and Rap1 are required for BLM melanoma cell invasion. RIAM silencing in melanoma cells led to inhibition of tumor growth and to delayed metastasis in a severe combined immunodeficiency xenograft model. Defective invasion of RIAM-silenced melanoma cells arose from impairment in persistent cell migration directionality, which was associated with deficient activation of a Vav2-RhoA-ROCK-myosin light chain pathway. Expression of constitutively active Vav2 and RhoA in cells depleted for RIAM partially rescued their invasion, indicating that Vav2 and RhoA mediate RIAM function. These results suggest that inhibition of cell invasion in RIAM-silenced melanoma cells is likely based on altered cell contractility and cell polarization. Furthermore, we show that RIAM depletion reduces ß1 integrin-dependent melanoma cell adhesion, which correlates with decreased activation of both Erk1/2 MAPK and phosphatidylinositol 3-kinase, two central molecules controlling cell growth and cell survival. In addition to causing inhibition of cell proliferation, RIAM silencing led to higher susceptibility to cell apoptosis. Together, these data suggest that defective activation of these kinases in RIAM-silenced cells could account for inhibition of melanoma cell growth and that RIAM might contribute to the dissemination of melanoma cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Movimento Celular , Melanoma/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Apoptose/genética , Adesão Celular/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Inativação Gênica , Humanos , Integrina beta1/genética , Integrina beta1/metabolismo , Melanoma/genética , Melanoma/patologia , Proteínas de Membrana/genética , Camundongos , Camundongos SCID , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Invasividade Neoplásica , Metástase Neoplásica , Transplante de Neoplasias , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-vav/genética , Proteínas Proto-Oncogênicas c-vav/metabolismo , Transplante Heterólogo , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
12.
J Cell Sci ; 122(Pt 19): 3492-501, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19723803

RESUMO

Tumour cell dissemination through corporal fluids (blood, lymph and body cavity fluids) is a distinctive feature of the metastatic process. Tumour cell transition from fluid to adhesive conditions involves an early polarization event and major rearrangements of the submembrane cytoskeleton that remain poorly understood. As regulation of cortical actin-membrane binding might be important in this process, we investigated the role of ezrin and moesin, which are key crosslinking proteins of the ERM (ezrin, radixin, moesin) family. We used short interfering RNA (siRNA) to show that moesin is crucial for invasion by melanoma cells in 3D matrices and in early lung colonization. Using live imaging, we show that following initial adhesion to the endothelium or 3D matrices, moesin is redistributed away from the region of adhesion, thereby generating a polarized cortex: a stable cortical actin dome enriched in moesin and an invasive membrane domain full of blebs. Using Lifeact-GFP, a 17-amino-acid peptide that binds F-actin, we show the initial symmetry breaking of cortical actin cytoskeleton during early attachment of round cells. We also demonstrated that ezrin and moesin are differentially distributed during initial invasion of 3D matrices, and, specifically, that moesin controls adhesion-dependent activation of Rho and subsequent myosin II contractility. Our results reveal that polarized moesin plays a role in orienting Rho activation, myosin II contractility, and cortical actin stability, which is crucial for driving directional vertical migration instead of superficial spreading on the fluid-to-solid tissue interface. We propose that this mechanism of cortical polarization could sustain extravasation of fluid-borne tumour cells during the process of metastasis.


Assuntos
Polaridade Celular , Melanoma/fisiopatologia , Proteínas dos Microfilamentos/metabolismo , Invasividade Neoplásica , Actinas/genética , Actinas/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/genética , Citoesqueleto/metabolismo , Humanos , Pulmão/metabolismo , Pulmão/patologia , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Proteínas dos Microfilamentos/genética
13.
Cancers (Basel) ; 13(2)2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33435306

RESUMO

Multiple myeloma (MM) is a hematologic cancer characterized by clonal proliferation of plasma cells in the bone marrow (BM). The progression, from the early stages of the disease as monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM) to MM and occasionally extramedullary disease, is drastically affected by the tumor microenvironment (TME). Soluble factors and direct cell-cell interactions regulate MM plasma cell trafficking and homing to the BM niche. Mesenchymal stromal cells, osteoclasts, osteoblasts, myeloid and lymphoid cells present in the BM create a unique milieu that favors MM plasma cell immune evasion and promotes disease progression. Moreover, TME is implicated in malignant cell protection against anti-tumor therapy. This review describes the main cellular and non-cellular components located in the BM, which condition the immunosuppressive environment and lead the MM establishment and progression.

14.
Am J Pathol ; 174(2): 602-12, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19147814

RESUMO

Melanoma is the most aggressive skin cancer once metastasis begins; therefore, it is important to characterize the molecular players involved in melanoma dissemination. The chemokine receptor CXCR4 and the membrane-bound metalloproteinase MT1-MMP are expressed on melanoma cells and represent candidate molecules for the control of metastasis. Using human melanoma transfectants that either overexpress or silence CXCR4 or MT1-MMP, or that have a combination of overexpression and interference of these proteins, we show that CXCR4 and MT1-MMP coordinate their activities at different steps along melanoma cell metastasis into the lungs. Results from in vivo xenograft mouse models of melanoma lung colonization and mice survival and short-term, homing nested polymerase chain reaction experiments from lung samples indicated that CXCR4 is required at early phases of melanoma cell arrival in the lungs. In contrast, MT1-MMP is not needed for these initial steps but promotes subsequent invasion and dissemination of the tumor with CXCR4. Investigation of potential cross talk between CXCR4 and MT1-MMP revealed that MT1-MMP accumulates intracellularly after melanoma cell stimulation with the CXCR4 ligand CXCL12, and that this process involves the activation of the Rac-Erk1/2 pathway. Subsequent to cell contact with specific basement membrane proteins, MT1-MMP redistributes to the cell membrane in a phosphatidylinositol 3-kinase-dependent manner. These results suggest that combination therapies that target CXCR4 and MT1-MMP should improve the limitations of the current therapies for metastatic melanoma.


Assuntos
Neoplasias Pulmonares/secundário , Metaloproteinase 14 da Matriz/metabolismo , Melanoma/secundário , Invasividade Neoplásica , Receptores CXCR4/metabolismo , Neoplasias Cutâneas/patologia , Animais , Western Blotting , Adesão Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células , Citometria de Fluxo , Humanos , Neoplasias Pulmonares/metabolismo , Melanoma/metabolismo , Camundongos , Camundongos SCID , Fosfatidilinositol 3-Quinases/metabolismo , Reação em Cadeia da Polimerase , Receptor Cross-Talk/fisiologia , Transdução de Sinais/fisiologia , Neoplasias Cutâneas/metabolismo , Transfecção
15.
Cell Motil Cytoskeleton ; 66(1): 48-61, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19023892

RESUMO

The adhesion molecule CD44 and the membrane-type matrix metalloproteinase MT1-MMP act coordinately in tumor cells to promote cell invasion through a yet unclear mechanism. We are interested in studying the interplay between CD44 and MT1-MMP in carcinoma cells embedded in HA containing three-dimensional collagen I matrices (3D HA-Col I) by time-lapse confocal microscopy imaging. Here we report the in vivo interaction between CD44 and MT1-MMP, revealed by fluorescence resonance energy transfer (FRET) microscopy. MT1-MMP interacts with CD44 preferentially at the trailing edge of the invading tumor cells during rear retraction and on membrane fragments released during the invasion process. A fluorescent biosensor designed to monitor the proteolytic processing of CD44 by live cell imaging demonstrates that cleavage of the CD44 extracellular domain is enriched in the retracting rear ends of invasive tumor cells. Invasion assays showed that MT1-MMP mediates CD44-dependent tumor-cell invasion, whereas CD44 is not essential for MT1-MMP-mediated invasion of 3D HA-Col I matrices. Together, our results support a role for MT1-MMP in cell retraction during CD44-mediated cell invasion.


Assuntos
Movimento Celular , Polaridade Celular , Receptores de Hialuronatos/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Invasividade Neoplásica/patologia , Linhagem Celular Tumoral , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Genes Reporter , Humanos , Receptores de Hialuronatos/química , Proteínas dos Microfilamentos/metabolismo , Ligação Proteica , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Transporte Proteico , Pseudópodes/enzimologia , Frações Subcelulares/metabolismo
16.
Front Immunol ; 10: 156, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30787933

RESUMO

The trafficking of neoplastic cells represents a key process that contributes to progression of hematologic malignancies. Diapedesis of neoplastic cells across endothelium and perivascular cells is facilitated by adhesion molecules and chemokines, which act in concert to tightly regulate directional motility. Intravital microscopy provides spatio-temporal views of neoplastic cell trafficking, and is crucial for testing and developing therapies against hematologic cancers. Multiple myeloma (MM), chronic lymphocytic leukemia (CLL), and acute lymphoblastic leukemia (ALL) are hematologic malignancies characterized by continuous neoplastic cell trafficking during disease progression. A common feature of these neoplasias is the homing and infiltration of blood cancer cells into the bone marrow (BM), which favors growth and survival of the malignant cells. MM cells traffic between different BM niches and egress from BM at late disease stages. Besides the BM, CLL cells commonly home to lymph nodes (LNs) and spleen. Likewise, ALL cells also infiltrate extramedullary organs, such as the central nervous system, spleen, liver, and testicles. The α4ß1 integrin and the chemokine receptor CXCR4 are key molecules for MM, ALL, and CLL cell trafficking into and out of the BM. In addition, the chemokine receptor CCR7 controls CLL cell homing to LNs, and CXCR4, CCR7, and CXCR3 contribute to ALL cell migration across endothelia and the blood brain barrier. Some of these receptors are used as diagnostic markers for relapse and survival in ALL patients, and their level of expression allows clinicians to choose the appropriate treatments. In CLL, elevated α4ß1 expression is an established adverse prognostic marker, reinforcing its role in the disease expansion. Combining current chemotherapies with inhibitors of malignant cell trafficking could represent a useful therapy against these neoplasias. Moreover, immunotherapy using humanized antibodies, CAR-T cells, or immune check-point inhibitors together with agents targeting the migration of tumor cells could also restrict their survival. In this review, we provide a view of the molecular players that regulate the trafficking of neoplastic cells during development and progression of MM, CLL, and ALL, together with current therapies that target the malignant cells.


Assuntos
Movimento Celular , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/patologia , ADP-Ribosil Ciclase 1/metabolismo , Animais , Quimiocinas/metabolismo , Humanos , Receptores de Hialuronatos/metabolismo , Integrinas/metabolismo , Metaloproteinases da Matriz/metabolismo , Selectinas/metabolismo
17.
Cancer Res ; 79(9): 2244-2256, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30833419

RESUMO

Combined treatment of metastatic melanoma with BRAF and MEK inhibitors has improved survival, but the emergence of resistance represents an important clinical challenge. Targeting ERK is a suitable strategy currently being investigated in melanoma and other cancers. To anticipate possible resistance to ERK inhibitors (ERKi), we used SCH772984 (SCH) as a model ERKi to characterize resistance mechanisms in two BRAF V600E melanoma cell lines. The ERKi-resistant cells were also resistant to vemurafenib (VMF), trametinib (TMT), and combined treatment with either VMF and SCH or TMT and SCH. Resistance to SCH involved stimulation of the IGF1R-MEK5-Erk5 signaling pathway, which counteracted inhibition of Erk1/2 activation and cell growth. Inhibition of IGF1R with linsitinib blocked Erk5 activation in SCH-resistant cells and decreased their growth in 3D spheroid growth assays as well as in NOD scid gamma (NSG) mice. Cells doubly resistant to VMF and TMT or to VMF and SCH also exhibited downregulated Erk1/2 activation linked to stimulation of the IGF1R-MEK5-Erk5 pathway, which accounted for resistance. In addition, we found that the decreased Erk1/2 activation in SCH-resistant cells involved reduced expression and function of TGFα. These data reveal an escape signaling route that melanoma cells use to bypass Erk1/2 blockade during targeted melanoma treatment and offer several possible targets whose disruption may circumvent resistance. SIGNIFICANCE: Activation of the IGF1R-MEK5-Erk5 signaling pathway opposes pharmacologic inhibition of Erk1/2 in melanoma, leading to the reactivation of cell proliferation and acquired resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Indazóis/farmacologia , MAP Quinase Quinase 5/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melanoma/patologia , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Piperazinas/farmacologia , Receptor IGF Tipo 1/metabolismo , Animais , Apoptose , Biomarcadores Tumorais , Proliferação de Células , Feminino , Humanos , MAP Quinase Quinase 5/genética , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteína Quinase 7 Ativada por Mitógeno/genética , Receptor IGF Tipo 1/genética , Transdução de Sinais , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
18.
J Leukoc Biol ; 82(2): 380-91, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17510295

RESUMO

The alpha4beta1 integrin is expressed on thymocytes and mediates cell attachment to its ligands CS-1/fibronectin (CS-1/FN) and VCAM-1 in the thymus. The chemokine CCL25 is highly expressed in the thymus, where it binds to its receptor CCR9 on thymocytes promoting migration and activation. We show here that alpha4beta1 and CCR9 are coexpressed mainly on double- and single-positive thymocytes and that CCL25 strongly stimulates CD4(+)CD8(+) and CD4(+)CD8(-) adhesion to CS-1/FN and VCAM-1. CCL25 rapidly activated the GTPases Rac and Rap1 on thymocytes, and this activation was required for stimulation of adhesion, as detected using the CCR9(+)/alpha4beta1(+) human T cell line Molt-4. To study the role on CCL25-stimulated adhesion of the Rac downstream effector Wiskott-Aldrich syndrome protein family verproline-homologous protein 2 (WAVE2) as well as of Rap1-GTP-interacting proteins, regulator of adhesion and cell polarization enriched in lymphoid tissues (RAPL) and Rap1-GTP-interacting adapter molecule (RIAM), we knocked down their expression and tested transfectant attachment to alpha4beta1 ligands. We found that WAVE2 and RAPL but not RIAM were required for efficient triggering by CCL25 of T cell adhesion to CS-1/FN and VCAM-1. Although Rac and Rap1 activation was required during early steps of T cell adhesion stimulated by CCL25, WAVE2 was needed for the development of actin-dependent T cell spreading subsequent to adhesion strengthening but not during initial alpha4beta1-ligand interactions. These results suggest that regulation by CCL25 of adhesion of thymocyte subpopulations mediated by alpha4beta1 could contribute to control their trafficking in the thymus during maturation, and identify Rac-WAVE2 and Rap1-RAPL as pathways whose activation is required in inside-out signaling, leading to stimulated adhesion.


Assuntos
Quimiocinas CC/metabolismo , Quimiocinas CC/farmacologia , Integrina alfa4beta1/metabolismo , Transdução de Sinais , Linfócitos T/efeitos dos fármacos , Animais , Adesão Celular , Células Cultivadas , Quimiocinas CC/genética , Quimiocinas CC/imunologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Modelos Biológicos , Interferência de RNA , Linfócitos T/citologia , Linfócitos T/fisiologia , Timo/citologia , Transfecção
19.
Mol Biol Cell ; 16(7): 3223-35, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15872091

RESUMO

The chemokine CXCL12 promotes T lymphocyte adhesion mediated by the integrin alpha4beta1. CXCL12 activates the GTPase Rac, as well as Vav1, a guanine-nucleotide exchange factor for Rac, concomitant with up-regulation of alpha4beta1-dependent adhesion. Inhibition of CXCL12-promoted Rac and Vav1 activation by transfection of dominant negative Rac or Vav1 forms, or by transfection of their siRNA, remarkably impaired the increase in T lymphocyte attachment to alpha4beta1 ligands in response to this chemokine. Importantly, inhibition of Vav1 expression by RNA interference resulted in a blockade of Rac activation in response to CXCL12. Adhesions in flow chambers and soluble binding assays using these transfectants indicated that initial ligand binding and adhesion strengthening mediated by alpha4beta1 were dependent on Vav1 and Rac activation by CXCL12. Finally, CXCL12-promoted T-cell transendothelial migration involving alpha4beta1-mediated adhesion was notably inhibited by expression of dominant negative Vav1 and Rac. These results indicate that activation of Vav1-Rac signaling pathway by CXCL12 represents an important inside-out event controlling efficient up-regulation of alpha4beta1-dependent T lymphocyte adhesion.


Assuntos
Integrina alfa4beta1/metabolismo , Proteínas Proto-Oncogênicas c-vav/metabolismo , Linfócitos T/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Western Blotting , Adesão Celular , Linhagem Celular , Movimento Celular , Quimiocina CXCL12 , Quimiocinas/metabolismo , Quimiocinas CXC/metabolismo , Eletroforese em Gel de Poliacrilamida , Endotélio Vascular/citologia , GTP Fosfo-Hidrolases/metabolismo , Genes Dominantes , Proteínas de Fluorescência Verde/metabolismo , Humanos , Imunoprecipitação , Ligantes , Linfócitos/citologia , Microscopia Confocal , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/imunologia , Fatores de Tempo , Transfecção , Regulação para Cima
20.
Cancer Res ; 66(1): 248-58, 2006 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-16397238

RESUMO

Melanoma cells express the chemokine receptor CXCR4, which confers invasive signals on binding to its ligand CXCL12. We show here that knocking down membrane-type matrix metalloproteinase (MT1-MMP) expression translates into a blockade of invasion across reconstituted basement membranes and type I collagen gels in response to CXCL12, which is the result of lack of MMP-2 activation. Interference with MMP-2 expression further confirms its important role during this invasion. Vav proteins are guanine-nucleotide exchange factors for Rho GTPases that regulate actin dynamics and gene expression. We show that melanoma cells express Vav1 and Vav2, which are activated by CXCL12 involving Jak activity. Blocking Vav expression by RNA interference results in impaired activation of Rac and Rho by CXCL12 and in a remarkable inhibition of CXCL12-promoted invasion. Importantly, up-regulation of MT1-MMP expression by CXCL12, a mechanism contributing to melanoma cell invasion, is blocked by knocking down Vav expression or by inhibiting Jak. Together, these data indicate that activation of Jak/Vav/Rho GTPase pathway by CXCL12 is a key signaling event for MT1-MMP/MMP-2-dependent melanoma cell invasion.


Assuntos
Quimiocinas CXC/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Metaloproteinases da Matriz/metabolismo , Melanoma/enzimologia , Melanoma/patologia , Proteínas Proto-Oncogênicas c-vav/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Linhagem Celular Tumoral , Quimiocina CXCL2 , Ativação Enzimática , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinases da Matriz/biossíntese , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz Associadas à Membrana , Melanoma/genética , Melanoma/metabolismo , Invasividade Neoplásica , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-vav/biossíntese , Proteínas Proto-Oncogênicas c-vav/genética , Interferência de RNA , Transfecção , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA