Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Cell ; 174(5): 1264-1276.e15, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30057116

RESUMO

During corticogenesis, ventricular zone progenitors sequentially generate distinct subtypes of neurons, accounting for the diversity of neocortical cells and the circuits they form. While activity-dependent processes are critical for the differentiation and circuit assembly of postmitotic neurons, how bioelectrical processes affect nonexcitable cells, such as progenitors, remains largely unknown. Here, we reveal that, in the developing mouse neocortex, ventricular zone progenitors become more hyperpolarized as they generate successive subtypes of neurons. Experimental in vivo hyperpolarization shifted the transcriptional programs and division modes of these progenitors to a later developmental status, with precocious generation of intermediate progenitors and a forward shift in the laminar, molecular, morphological, and circuit features of their neuronal progeny. These effects occurred through inhibition of the Wnt-beta-catenin signaling pathway by hyperpolarization. Thus, during corticogenesis, bioelectric membrane properties are permissive for specific molecular pathways to coordinate the temporal progression of progenitor developmental programs and thus neocortical neuron diversity.


Assuntos
Potenciais da Membrana , Neocórtex/embriologia , Neurônios/metabolismo , Células-Tronco/citologia , Animais , Encéfalo/citologia , Encéfalo/embriologia , Diferenciação Celular , Progressão da Doença , Eletroporação , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Neocórtex/citologia , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/citologia , Neurogênese , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Análise de Sequência de RNA , Transdução de Sinais , Fatores de Tempo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
2.
Nature ; 622(7981): 120-129, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37674083

RESUMO

Multimodal astrocyte-neuron communications govern brain circuitry assembly and function1. For example, through rapid glutamate release, astrocytes can control excitability, plasticity and synchronous activity2,3 of synaptic networks, while also contributing to their dysregulation in neuropsychiatric conditions4-7. For astrocytes to communicate through fast focal glutamate release, they should possess an apparatus for Ca2+-dependent exocytosis similar to neurons8-10. However, the existence of this mechanism has been questioned11-13 owing to inconsistent data14-17 and a lack of direct supporting evidence. Here we revisited the astrocyte glutamate exocytosis hypothesis by considering the emerging molecular heterogeneity of astrocytes18-21 and using molecular, bioinformatic and imaging approaches, together with cell-specific genetic tools that interfere with glutamate exocytosis in vivo. By analysing existing single-cell RNA-sequencing databases and our patch-seq data, we identified nine molecularly distinct clusters of hippocampal astrocytes, among which we found a notable subpopulation that selectively expressed synaptic-like glutamate-release machinery and localized to discrete hippocampal sites. Using GluSnFR-based glutamate imaging22 in situ and in vivo, we identified a corresponding astrocyte subgroup that responds reliably to astrocyte-selective stimulations with subsecond glutamate release events at spatially precise hotspots, which were suppressed by astrocyte-targeted deletion of vesicular glutamate transporter 1 (VGLUT1). Furthermore, deletion of this transporter or its isoform VGLUT2 revealed specific contributions of glutamatergic astrocytes in cortico-hippocampal and nigrostriatal circuits during normal behaviour and pathological processes. By uncovering this atypical subpopulation of specialized astrocytes in the adult brain, we provide insights into the complex roles of astrocytes in central nervous system (CNS) physiology and diseases, and identify a potential therapeutic target.


Assuntos
Astrócitos , Sistema Nervoso Central , Ácido Glutâmico , Transdução de Sinais , Adulto , Humanos , Astrócitos/classificação , Astrócitos/citologia , Astrócitos/metabolismo , Sistema Nervoso Central/citologia , Sistema Nervoso Central/metabolismo , Ácido Glutâmico/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Neurônios/metabolismo , Transmissão Sináptica , Cálcio/metabolismo , Exocitose , Análise da Expressão Gênica de Célula Única , Proteína Vesicular 1 de Transporte de Glutamato/deficiência , Proteína Vesicular 1 de Transporte de Glutamato/genética , Deleção de Genes , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo
3.
EMBO Rep ; 22(4): e51404, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33779029

RESUMO

Status epilepticus (SE) is a condition in which seizures are not self-terminating and thereby pose a serious threat to the patient's life. The molecular mechanisms underlying SE are likely heterogeneous and not well understood. Here, we reveal a role for the RNA-binding protein Fragile X-Related Protein 2 (FXR2P) in SE. Fxr2 KO mice display reduced sensitivity specifically to kainic acid-induced SE. Immunoprecipitation of FXR2P coupled to next-generation sequencing of associated mRNAs shows that FXR2P targets are enriched in genes that encode glutamatergic post-synaptic components. Of note, the FXR2P target transcriptome has a significant overlap with epilepsy and SE risk genes. In addition, Fxr2 KO mice fail to show sustained ERK1/2 phosphorylation induced by KA and present reduced burst activity in the hippocampus. Taken together, our findings show that the absence of FXR2P decreases the expression of glutamatergic proteins, and this decrease might prevent self-sustained seizures.


Assuntos
Ácido Caínico , Estado Epiléptico , Animais , Hipocampo/metabolismo , Ácido Caínico/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Convulsões/induzido quimicamente , Convulsões/genética , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/genética
4.
Nature ; 538(7623): 96-98, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27669022

RESUMO

Modality-specific sensory inputs from individual sense organs are processed in parallel in distinct areas of the neocortex. For each sensory modality, input follows a cortico-thalamo-cortical loop in which a 'first-order' exteroceptive thalamic nucleus sends peripheral input to the primary sensory cortex, which projects back to a 'higher order' thalamic nucleus that targets a secondary sensory cortex. This conserved circuit motif raises the possibility that shared genetic programs exist across sensory modalities. Here we report that, despite their association with distinct sensory modalities, first-order nuclei in mice are genetically homologous across somatosensory, visual, and auditory pathways, as are higher order nuclei. We further reveal peripheral input-dependent control over the transcriptional identity and connectivity of first-order nuclei by showing that input ablation leads to induction of higher-order-type transcriptional programs and rewiring of higher-order-directed descending cortical input to deprived first-order nuclei. These findings uncover an input-dependent genetic logic for the design and plasticity of sensory pathways, in which conserved developmental programs lead to conserved circuit motifs across sensory modalities.


Assuntos
Vias Aferentes/fisiologia , Modelos Genéticos , Plasticidade Neuronal/genética , Plasticidade Neuronal/fisiologia , Vias Aferentes/citologia , Animais , Vias Auditivas/citologia , Vias Auditivas/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Corpos Geniculados/citologia , Corpos Geniculados/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Córtex Somatossensorial/fisiologia , Núcleos Talâmicos/citologia , Núcleos Talâmicos/fisiologia , Transcrição Gênica , Vias Visuais/citologia , Vias Visuais/fisiologia
5.
Nature ; 511(7510): 471-4, 2014 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-24828045

RESUMO

During development, thalamocortical (TC) input has a critical role in the spatial delineation and patterning of cortical areas, yet the underlying cellular and molecular mechanisms that drive cortical neuron differentiation are poorly understood. In the primary (S1) and secondary (S2) somatosensory cortex, layer 4 (L4) neurons receive mutually exclusive input originating from two thalamic nuclei: the ventrobasalis (VB), which conveys tactile input, and the posterior nucleus (Po), which conveys modulatory and nociceptive input. Recently, we have shown that L4 neuron identity is not fully committed postnatally, implying a capacity for TC input to influence differentiation during cortical circuit assembly. Here we investigate whether the cell-type-specific molecular and functional identity of L4 neurons is instructed by the origin of their TC input. Genetic ablation of the VB at birth resulted in an anatomical and functional rewiring of Po projections onto L4 neurons in S1. This induced acquisition of Po input led to a respecification of postsynaptic L4 neurons, which developed functional molecular features of Po-target neurons while repressing VB-target traits. Respecified L4 neurons were able to respond both to touch and to noxious stimuli, in sharp contrast to the normal segregation of these sensory modalities in distinct cortical circuits. These findings reveal a behaviourally relevant TC-input-type-specific control over the molecular and functional differentiation of postsynaptic L4 neurons and cognate intracortical circuits, which instructs the development of modality-specific neuronal and circuit properties during corticogenesis.


Assuntos
Diferenciação Celular , Vias Neurais/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Densidade Pós-Sináptica/fisiologia , Córtex Somatossensorial/fisiologia , Núcleos Talâmicos/fisiologia , Animais , Axônios/efeitos dos fármacos , Axônios/fisiologia , Capsaicina/farmacologia , Diferenciação Celular/efeitos dos fármacos , Feminino , Masculino , Camundongos Endogâmicos C57BL , Vias Neurais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Noxas/farmacologia , Optogenética , Densidade Pós-Sináptica/efeitos dos fármacos , Córtex Somatossensorial/citologia , Córtex Somatossensorial/efeitos dos fármacos , Potenciais Sinápticos/efeitos dos fármacos , Núcleos Talâmicos/citologia , Núcleos Talâmicos/efeitos dos fármacos , Tato/fisiologia , Vibrissas/efeitos dos fármacos , Vibrissas/fisiologia
6.
Int J Mol Sci ; 21(20)2020 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-33050604

RESUMO

The complexity of brain structure and function is rooted in the precise spatial and temporal regulation of selective developmental events. During neurogenesis, both vertebrates and invertebrates generate a wide variety of specialized cell types through the expansion and specification of a restricted set of neuronal progenitors. Temporal patterning of neural progenitors rests on fine regulation between cell-intrinsic and cell-extrinsic mechanisms. The rapid emergence of high-throughput single-cell technologies combined with elaborate computational analysis has started to provide us with unprecedented biological insights related to temporal patterning in the developing central nervous system (CNS). Here, we present an overview of recent advances in Drosophila and vertebrates, focusing both on cell-intrinsic mechanisms and environmental influences. We then describe the various multi-omics approaches that have strongly contributed to our current understanding and discuss perspectives on the various -omics approaches that hold great potential for the future of temporal patterning research.


Assuntos
Padronização Corporal/genética , Genômica , Metabolômica , Neurogênese/genética , Proteômica , Análise de Célula Única , Lobo Temporal/embriologia , Lobo Temporal/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento , Genômica/métodos , Proteômica/métodos , Análise de Célula Única/métodos
7.
Nature ; 555(7697): 452-454, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29565398

Assuntos
Neurônios
8.
Nature ; 555(7697): 452-454, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32034370
9.
Nat Commun ; 15(1): 5489, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942786

RESUMO

Lipid droplets (LDs) are dynamic lipid storage organelles. They are tightly linked to metabolism and can exert protective functions, making them important players in health and disease. Most LD studies in vivo rely on staining methods, providing only a snapshot. We therefore developed a LD-reporter mouse by labelling the endogenous LD coat protein perilipin 2 (PLIN2) with tdTomato, enabling staining-free fluorescent LD visualisation in living and fixed tissues and cells. Here we validate this model under standard and high-fat diet conditions and demonstrate that LDs are highly abundant in various cell types in the healthy brain, including neurons, astrocytes, ependymal cells, neural stem/progenitor cells and microglia. Furthermore, we also show that LDs are abundant during brain development and can be visualized using live imaging of embryonic slices. Taken together, our tdTom-Plin2 mouse serves as a novel tool to study LDs and their dynamics under both physiological and diseased conditions in all tissues expressing Plin2.


Assuntos
Encéfalo , Gotículas Lipídicas , Perilipina-2 , Animais , Perilipina-2/metabolismo , Perilipina-2/genética , Gotículas Lipídicas/metabolismo , Encéfalo/metabolismo , Camundongos , Neurônios/metabolismo , Técnicas de Introdução de Genes , Camundongos Transgênicos , Feminino , Proteínas Luminescentes/metabolismo , Proteínas Luminescentes/genética , Masculino , Astrócitos/metabolismo , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Microglia/metabolismo
10.
Neuron ; 111(7): 1094-1103.e8, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36731469

RESUMO

Parental behaviors secure the well-being of newborns and concomitantly limit negative affective states in adults, which emerge when coping with neonatal distress becomes challenging. Whether negative-affect-related neuronal circuits orchestrate parental actions is unknown. Here, we identify parental signatures in lateral habenula neurons receiving bed nucleus of stria terminalis innervation (BNSTLHb). We find that LHb neurons of virgin female mice increase their activity following pup distress vocalization and are necessary for pup-call-driven aversive behaviors. LHb activity rises during pup retrieval, a behavior worsened by LHb inactivation. Intersectional cell identification and transcriptional profiling associate BNSTLHb cells to parenting and outline a gene expression in female virgins similar to that in mothers but different from that in non-parental virgin male mice. Finally, tracking and manipulating BNSTLHb cell activity demonstrates their specificity for encoding negative affect and pup retrieval. Thus, a negative affect neural circuit processes newborn distress signals and may limit them by guiding female parenting.


Assuntos
Habenula , Neurônios , Camundongos , Animais , Masculino , Feminino , Neurônios/fisiologia , Aprendizagem da Esquiva , Afeto , Habenula/fisiologia
11.
Sci Adv ; 8(46): eabo4552, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36399562

RESUMO

During corticogenesis, dynamic regulation of apical adhesion is fundamental to generate correct numbers and cell identities. While radial glial cells (RGCs) maintain basal and apical anchors, basal progenitors and neurons detach and settle at distal positions from the apical border. Whether diffusible signals delivered from the cerebrospinal fluid (CSF) contribute to the regulation of apical adhesion dynamics remains fully unknown. Secreted class 3 Semaphorins (Semas) trigger cell responses via Plexin-Neuropilin (Nrp) membrane receptor complexes. Here, we report that unconventional Sema3-Nrp preformed complexes are delivered by the CSF from sources including the choroid plexus to Plexin-expressing RGCs via their apical endfeet. Through analysis of mutant mouse models and various ex vivo assays mimicking ventricular delivery to RGCs, we found that two different complexes, Sema3B/Nrp2 and Sema3F/Nrp1, exert dual effects on apical endfeet dynamics, nuclei positioning, and RGC progeny. This reveals unexpected balance of CSF-delivered guidance molecules during cortical development.

12.
Curr Opin Neurobiol ; 66: 116-124, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33171340

RESUMO

Our understanding of the central nervous system (CNS) development has been strongly enhanced by the recent progress of single-cell multiomics approaches. Certainly, the multiplex profiling of individual cell epigenomes and transcriptomes together with dynamic lineage tracing systems brings encouraging new perspectives and prompts a paradigm shift in neuroscience developmental research. In this review, we outline the latest multiomics -based findings in CNS development, from the early CNS patterning to the regional specification of the CNS along anterior-posterior axis (forebrain, midbrain, hindbrain and spinal cord). Overall, multiomics development has substantially impacted current knowledge and has challenged our classical models for embryonic CNS development. Integrating all these newly generated -omics databases represents the next step to overcome challenges in understanding developmental diseases.


Assuntos
Padronização Corporal , Medula Espinal , Regulação da Expressão Gênica no Desenvolvimento , Prosencéfalo
13.
Nat Commun ; 12(1): 7362, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34934077

RESUMO

Neural stem/progenitor cells (NSPCs) generate new neurons throughout adulthood. However, the underlying regulatory processes are still not fully understood. Lipid metabolism plays an important role in regulating NSPC activity: build-up of lipids is crucial for NSPC proliferation, whereas break-down of lipids has been shown to regulate NSPC quiescence. Despite their central role for cellular lipid metabolism, the role of lipid droplets (LDs), the lipid storing organelles, in NSPCs remains underexplored. Here we show that LDs are highly abundant in adult mouse NSPCs, and that LD accumulation is significantly altered upon fate changes such as quiescence and differentiation. NSPC proliferation is influenced by the number of LDs, inhibition of LD build-up, breakdown or usage, and the asymmetric inheritance of LDs during mitosis. Furthermore, high LD-containing NSPCs have increased metabolic activity and capacity, but do not suffer from increased oxidative damage. Together, these data indicate an instructive role for LDs in driving NSPC behaviour.


Assuntos
Gotículas Lipídicas/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Diferenciação Celular , Proliferação de Células , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Padrões de Herança/genética , Peroxidação de Lipídeos , Masculino , Camundongos Endogâmicos C57BL , Mitose , Neurônios/citologia , Neurônios/metabolismo , Perilipina-2/metabolismo , Fosfolipídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo
14.
Nat Commun ; 8(1): 2015, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29222517

RESUMO

Input from the sensory organs is required to pattern neurons into topographical maps during development. Dendritic complexity critically determines this patterning process; yet, how signals from the periphery act to control dendritic maturation is unclear. Here, using genetic and surgical manipulations of sensory input in mouse somatosensory thalamocortical neurons, we show that membrane excitability is a critical component of dendritic development. Using a combination of genetic approaches, we find that ablation of N-methyl-D-aspartate (NMDA) receptors during postnatal development leads to epigenetic repression of Kv1.1-type potassium channels, increased excitability, and impaired dendritic maturation. Lesions to whisker input pathways had similar effects. Overexpression of Kv1.1 was sufficient to enable dendritic maturation in the absence of sensory input. Thus, Kv1.1 acts to tune neuronal excitability and maintain it within a physiological range, allowing dendritic maturation to proceed. Together, these results reveal an input-dependent control over neuronal excitability and dendritic complexity in the development and plasticity of sensory pathways.


Assuntos
Dendritos/fisiologia , Neurônios/fisiologia , Córtex Somatossensorial/fisiologia , Tálamo/fisiologia , Animais , Feminino , Perfilação da Expressão Gênica , Canal de Potássio Kv1.1/genética , Canal de Potássio Kv1.1/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Plasticidade Neuronal/fisiologia , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Córtex Somatossensorial/citologia , Transmissão Sináptica/fisiologia , Tálamo/citologia , Vibrissas/inervação , Vibrissas/fisiologia
15.
Nat Commun ; 8: 14219, 2017 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-28134272

RESUMO

Cortical GABAergic interneurons constitute a highly diverse population of inhibitory neurons that are key regulators of cortical microcircuit function. An important and heterogeneous group of cortical interneurons specifically expresses the serotonin receptor 3A (5-HT3AR) but how this diversity emerges during development is poorly understood. Here we use single-cell transcriptomics to identify gene expression patterns operating in Htr3a-GFP+ interneurons during early steps of cortical circuit assembly. We identify three main molecular types of Htr3a-GFP+ interneurons, each displaying distinct developmental dynamics of gene expression. The transcription factor Meis2 is specifically enriched in a type of Htr3a-GFP+ interneurons largely confined to the cortical white matter. These MEIS2-expressing interneurons appear to originate from a restricted region located at the embryonic pallial-subpallial boundary. Overall, this study identifies MEIS2 as a subclass-specific marker for 5-HT3AR-containing interstitial interneurons and demonstrates that the transcriptional and anatomical parcellation of cortical interneurons is developmentally coupled.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Neurônios GABAérgicos/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Homeodomínio/fisiologia , Interneurônios/fisiologia , Animais , Biomarcadores , Fator II de Transcrição COUP/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/citologia , Embrião de Mamíferos , Proteínas da Matriz Extracelular/metabolismo , Feminino , Perfilação da Expressão Gênica/métodos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microfluídica/métodos , Rede Nervosa/crescimento & desenvolvimento , Proteínas do Tecido Nervoso/metabolismo , Receptores 5-HT3 de Serotonina/metabolismo , Proteína Reelina , Análise de Sequência de RNA/métodos , Serina Endopeptidases/metabolismo , Análise de Célula Única/métodos
16.
Science ; 351(6280): 1443-6, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-26940868

RESUMO

During corticogenesis, excitatory neurons are born from progenitors located in the ventricular zone (VZ), from where they migrate to assemble into circuits. How neuronal identity is dynamically specified upon progenitor division is unknown. Here, we study this process using a high-temporal-resolution technology allowing fluorescent tagging of isochronic cohorts of newborn VZ cells. By combining this in vivo approach with single-cell transcriptomics in mice, we identify and functionally characterize neuron-specific primordial transcriptional programs as they dynamically unfold. Our results reveal early transcriptional waves that instruct the sequence and pace of neuronal differentiation events, guiding newborn neurons toward their final fate, and contribute to a road map for the reverse engineering of specific classes of cortical neurons from undifferentiated cells.


Assuntos
Neocórtex/embriologia , Neurogênese/genética , Neurônios/citologia , Transcrição Gênica , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Ventrículos Cerebrais/citologia , Ventrículos Cerebrais/embriologia , Proteínas de Ligação a DNA/genética , Feminino , Proteínas Ligadas por GPI/genética , Proteínas de Fluorescência Verde/genética , Masculino , Camundongos , Neocórtex/citologia , Proteínas do Tecido Nervoso/genética , Células-Tronco Neurais/citologia , Neuropeptídeos/genética , Fatores de Transcrição SOXB1/genética , Proteínas com Domínio T , Transcriptoma
17.
Neuron ; 91(6): 1276-1291, 2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27618676

RESUMO

Subcellular target recognition in the CNS is the culmination of a multiple-step program including axon guidance, target recognition, and synaptogenesis. In cerebellum, basket cells (BCs) innervate the soma and axon initial segment (AIS) of Purkinje cells (PCs) to form the pinceau synapse, but the underlying mechanisms remain incompletely understood. Here, we demonstrate that neuropilin-1 (NRP1), a Semaphorin receptor expressed in BCs, controls both axonal guidance and subcellular target recognition. We show that loss of Semaphorin 3A function or specific deletion of NRP1 in BCs alters the stereotyped organization of BC axon and impairs pinceau synapse formation. Further, we identified NRP1 as a trans-synaptic binding partner of the cell adhesion molecule neurofascin-186 (NF186) expressed in the PC AIS during pinceau synapse formation. These findings identify a dual function of NRP1 in both axon guidance and subcellular target recognition in the construction of GABAergic circuitry.


Assuntos
Orientação de Axônios/fisiologia , Cerebelo/citologia , Cerebelo/crescimento & desenvolvimento , Neurônios GABAérgicos/fisiologia , Neuropilina-1/fisiologia , Animais , Células CHO , Moléculas de Adesão Celular/metabolismo , Técnicas de Cocultura , Cricetulus , Humanos , Fatores de Crescimento Neural/metabolismo , Neurogênese/fisiologia , Células de Purkinje/fisiologia , Semaforina-3A/fisiologia , Sinapses/fisiologia
18.
Curr Biol ; 23(10): 850-61, 2013 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-23602477

RESUMO

BACKGROUND: GABAergic interneurons regulate the balance and dynamics of neural circuits, in part, by elaborating their strategically placed axon branches that innervate specific cellular and subcellular targets. However, the molecular mechanisms that regulate target-directed GABAergic axon branching are not well understood. RESULTS: Here we show that the secreted axon guidance molecule, SEMA3A, expressed locally by Purkinje cells, regulates cerebellar basket cell axon branching through its cognate receptor Neuropilin-1 (NRP1). SEMA3A was specifically localized and enriched in the Purkinje cell layer (PCL). In sema3A(-/-) and nrp1(sema-/sema-) mice lacking SEMA3A-binding domains, basket axon branching in PCL was reduced. We demonstrate that SEMA3A-induced axon branching was dependent on local recruitment of soluble guanylyl cyclase (sGC) to the plasma membrane of basket cells, and sGC subcellular trafficking was regulated by the Src kinase FYN. In fyn-deficient mice, basket axon terminal branching was reduced in PCL, but not in the molecular layer. CONCLUSIONS: These results demonstrate a critical role of local SEMA3A signaling in layer-specific axonal branching, which contributes to target innervation.


Assuntos
Cerebelo/citologia , Interneurônios/citologia , Semaforina-3A/metabolismo , Transdução de Sinais , Animais , Axônios , Cerebelo/metabolismo , GMP Cíclico/metabolismo , Guanilato Ciclase/metabolismo , Camundongos , Camundongos Knockout , Transporte Proteico , Ácido gama-Aminobutírico/metabolismo
19.
J Biol Chem ; 283(11): 6799-805, 2008 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-18182392

RESUMO

Functional interplay between ionotropic and metabotropic receptors frequently involves complex intracellular signaling cascades. The group I metabotropic glutamate receptor mGlu5a co-clusters with the ionotropic N-methyl-d-aspartate (NMDA) receptor in hippocampal neurons. In this study, we report that a more direct cross-talk can exist between these types of receptors. Using bioluminescence resonance energy transfer in living HEK293 cells, we demonstrate that mGlu5a and NMDA receptor clustering reflects the existence of direct physical interactions. Consequently, the mGlu5a receptor decreased NMDA receptor current, and reciprocally, the NMDA receptor strongly reduced the ability of the mGlu5a receptor to release intracellular calcium. We show that deletion of the C terminus of the mGlu5a receptor abolished both its interaction with the NMDA receptor and reciprocal inhibition of the receptors. This direct functional interaction implies a higher degree of target-effector specificity, timing, and subcellular localization of signaling than could ever be predicted with complex signaling pathways.


Assuntos
Regulação da Expressão Gênica , Receptores de Ácido Caínico/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Cálcio/metabolismo , Linhagem Celular , Transferência de Energia , Proteínas de Ligação ao GTP/metabolismo , Hipocampo/metabolismo , Humanos , Proteínas Luminescentes/química , Modelos Biológicos , Estrutura Terciária de Proteína , Receptor de Glutamato Metabotrópico 5 , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA