Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Int J Mol Sci ; 24(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36982965

RESUMO

Mitochondria-nucleus communication during stress dictates cellular fate with consequences on the etiopathology of multiple age-related diseases. Impaired mitochondrial quality control through loss of function of the mitochondrial protease HtrA2 associates with accumulation of damaged mitochondria and triggers the integrated stress response, implicating the transcription factor CHOP. Here we have employed a combined model of impaired mitochondria quality control, namely HtrA2 loss of function, and/or integrated stress response, namely CHOP loss of function, and genotoxicity to address the distinctive roles of these cellular components in modulating intracellular and intercellular responses. The genotoxic agents employed were cancer therapeutic agents such as irradiation with X-ray and protons or treatment with the radiomimetic bleomycin. The irradiation had an enhanced effect in inducing DNA damage in cells with CHOP loss of function, while the bleomycin treatment induced more DNA damage in all the transgenic cells as compared to the control. The genetic modifications impaired the transmission of DNA damage signalling intercellularly. Furthermore, we have dissected the signalling pathways modulated by irradiation in selected genotypes with RNA sequencing analysis. We identified that loss of HtrA2 and CHOP function, respectively, lowers the threshold where irradiation may induce the activation of innate immune responses via cGAS-STING; this may have a significant impact on decisions for combined therapeutic approaches for various diseases.


Assuntos
Mitocôndrias , Transdução de Sinais , Mitocôndrias/metabolismo , Núcleo Celular/metabolismo , Proteínas de Membrana/metabolismo , Dano ao DNA , DNA Mitocondrial/metabolismo
2.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34360718

RESUMO

Besides the direct effects of radiations, indirect effects are observed within the surrounding non-irradiated area; irradiated cells relay stress signals in this close proximity, inducing the so-called radiation-induced bystander effect. These signals received by neighboring unirradiated cells induce specific responses similar with those of direct irradiated cells. To understand the cellular response of bystander cells, we performed a 2D gel-based proteomic study of the chondrocytes receiving the conditioned medium of low-dose irradiated chondrosarcoma cells. The conditioned medium was directly analyzed by mass spectrometry in order to identify candidate bystander factors involved in the signal transmission. The proteomic analysis of the bystander chondrocytes highlighted 20 proteins spots that were significantly modified at low dose, implicating several cellular mechanisms, such as oxidative stress responses, cellular motility, and exosomes pathways. In addition, the secretomic analysis revealed that the abundance of 40 proteins in the conditioned medium of 0.1 Gy irradiated chondrosarcoma cells was significantly modified, as compared with the conditioned medium of non-irradiated cells. A large cluster of proteins involved in stress granules and several proteins involved in the cellular response to DNA damage stimuli were increased in the 0.1 Gy condition. Several of these candidates and cellular mechanisms were confirmed by functional analysis, such as 8-oxodG quantification, western blot, and wound-healing migration tests. Taken together, these results shed new lights on the complexity of the radiation-induced bystander effects and the large variety of the cellular and molecular mechanisms involved, including the identification of a new potential actor, namely the stress granules.


Assuntos
Neoplasias Ósseas/metabolismo , Efeito Espectador/efeitos da radiação , Condrócitos/metabolismo , Condrossarcoma/metabolismo , Grânulos Citoplasmáticos/metabolismo , Proteômica , Raios X , Neoplasias Ósseas/radioterapia , Linhagem Celular Tumoral , Condrossarcoma/radioterapia , Humanos
3.
Int J Mol Sci ; 21(19)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33007844

RESUMO

This study aims to investigate whether ionizing radiation combined with doxorubicin-conjugated iron oxide nanoparticles (NP-DOX) improves the internalization and cytotoxic effects of the nano-carrier-mediated drug delivery in MG-63 human osteosarcoma cells. NP-DOX was designed and synthesized using the co-precipitation method. Highly stable and crystalline nanoparticles conjugated with DOX were internalized in MG-63 cells through macropinocytosis and located in the perinuclear area. Higher nanoparticles internalization in MG-63 cells previously exposed to 1 Gy X-rays was correlated with an early accumulation of cells in G2/M, starting at 12 h after treatment. After 48 h, the application of the combined treatment led to higher cytotoxic effects compared to the individual treatment, with a reduction in the metabolic capacity and unrepaired DNA breaks, whilst a low percent of arrested cells, contributing to the commitment of mitotic catastrophe. NP-DOX showed hemocompatibility and no systemic cytotoxicity, nor histopathological alteration of the main organs.


Assuntos
Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Osteossarcoma/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Terapia Combinada , Doxorrubicina/química , Endocitose/efeitos dos fármacos , Endocitose/efeitos da radiação , Compostos Férricos/química , Compostos Férricos/farmacologia , Humanos , Mitose/efeitos dos fármacos , Mitose/efeitos da radiação , Osteossarcoma/patologia , Osteossarcoma/radioterapia , Radiação Ionizante
4.
Molecules ; 22(7)2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28657606

RESUMO

Nanotechnology has been successfully used for the fabrication of targeted anti-cancer drug carriers. This study aimed to obtain Fe3O4 nanoparticles functionalized with Gemcitabine to improve the cytotoxic effects of the chemotherapeutic substance on cancer cells. The (un) functionalized magnetite nanoparticles were synthesized using a modified co-precipitation method. The nanoconjugate characterization was performed by XRD, SEM, SAED and HRTEM; the functionalizing of magnetite with anti-tumor substances has been highlighted through TGA. The interaction with biologic media has been studied by means of stability and agglomeration tendency (using DLS and Zeta Potential); also, the release kinetics of the drug in culture media was evaluated. Cytotoxicity of free-Gemcitabine and the obtained nanoconjugate were evaluated on human BT 474 breast ductal carcinoma, HepG2 hepatocellular carcinoma and MG 63 osteosarcoma cells by MTS. In parallel, cellular morphology of these cells were examined through fluorescence microscopy and SEM. The localization of the nanoparticles related to the cells was studied using SEM, EDX and TEM. Hemolysis assay showed no damage of erythrocytes. Additionally, an in vivo biodistribution study was made for tracking where Fe3O4@Gemcitabine traveled in the body of mice. Our results showed that the transport of the drug improves the cytotoxic effects in comparison with the one produced by free Gemcitabine for the BT474 and HepG2 cells. The in vivo biodistribution test proved nanoparticle accumulation in the vital organs, with the exception of spleen, where black-brown deposits have been found. These results indicate that our Gemcitabine-functionalized nanoparticles are a promising targeted system for applications in cancer therapy.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Desoxicitidina/análogos & derivados , Nanopartículas de Magnetita/química , Antineoplásicos/efeitos adversos , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Desoxicitidina/efeitos adversos , Desoxicitidina/química , Desoxicitidina/farmacologia , Eritrócitos/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Nanotecnologia/métodos , Gencitabina
5.
Radiat Environ Biophys ; 55(3): 371-9, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27025606

RESUMO

Bystander effects are indirect consequences of radiation and many other stress factors. They occur in cells that are not directly exposed to these factors, but receive signals from affected cells either by gap junctions or by molecules released in the medium. Characterizing these effects and deciphering the underlying mechanisms involved in radiation-induced bystander effects are relevant for cancer radiotherapy and radioprotection. At doses of X-ray radiation 0.5 and 1 Gy, we detected bystander effects as increased numbers of micronuclei shortly after the treatment, through medium transfer and by co-cultures. Interestingly, bystander cells did not exhibit long-term adverse changes in viability. Evaluation of several compartmental stress markers (CHOP, BiP, mtHsp60, cytHsp70) by qRT-PCR did not reveal expression changes at transcriptional level. We investigated the involvement of ROS and NO in this process by addition of specific scavengers of these molecules, DMSO or c-PTIO in the transferred medium. This approach proved that ROS but not NO is involved in the induction of lesions in the acceptor cells. These results indicate that L929 cells are susceptible to stress effects of radiation-induced bystander signaling.


Assuntos
Efeito Espectador , Micronúcleos com Defeito Cromossômico , Raios X , Animais , Linhagem Celular , Sobrevivência Celular/efeitos da radiação , Chaperonina 60 , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico HSP70 , Proteínas de Choque Térmico , Camundongos , Proteínas Mitocondriais , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico , Fator de Transcrição CHOP
6.
Cells ; 13(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38920686

RESUMO

The use of charged particle radiotherapy is currently increasing, but combination therapy with DNA repair inhibitors remains to be exploited in the clinic. The high-linear energy transfer (LET) radiation delivered by charged particles causes clustered DNA damage, which is particularly effective in destroying cancer cells. Whether the DNA damage response to this type of damage is different from that elicited in response to low-LET radiation, and if and how it can be targeted to increase treatment efficacy, is not fully understood. Although several preclinical studies have reported radiosensitizing effects when proton or carbon ion irradiation is combined with inhibitors of, e.g., PARP, ATR, ATM, or DNA-PKcs, further exploration is required to determine the most effective treatments. Here, we examine what is known about repair pathway choice in response to high- versus low-LET irradiation, and we discuss the effects of inhibitors of these pathways when combined with protons and carbon ions. Additionally, we explore the potential effects of DNA repair inhibitors on antitumor immune signaling upon proton and carbon ion irradiation. Due to the reduced effect on healthy tissue and better immune preservation, particle therapy may be particularly well suited for combination with DNA repair inhibitors.


Assuntos
Dano ao DNA , Reparo do DNA , Radioterapia com Íons Pesados , Terapia com Prótons , Humanos , Reparo do DNA/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Animais , Transferência Linear de Energia
7.
Sci Rep ; 13(1): 14878, 2023 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689817

RESUMO

New therapeutic approaches are needed for the management of the highly chemo- and radioresistant chondrosarcoma (CHS). In this work, we used polyethylene glycol-encapsulated iron oxide nanoparticles for the intracellular delivery of the chemotherapeutic doxorubicin (IONPDOX) to augment the cytotoxic effects of carbon ions in comparison to photon radiation therapy. The in vitro biological effects were investigated in SW1353 chondrosarcoma cells focusing on the following parameters: cell survival using clonogenic test, detection of micronuclei (MN) by cytokinesis blocked micronucleus assay and morphology together with spectral fingerprints of nuclei using enhanced dark-field microscopy (EDFM) assembled with a hyperspectral imaging (HI) module. The combination of IONPDOX with ion carbon or photon irradiation increased the lethal effects of irradiation alone in correlation with the induction of MN. Alterations in the hyperspectral images and spectral profiles of nuclei reflected the CHS cell biological modifications following the treatments, highlighting possible new spectroscopic markers of cancer therapy effects. These outcomes showed that the proposed combined treatment is promising in improving CHS radiotherapy.


Assuntos
Neoplasias Ósseas , Condrossarcoma , Humanos , Íons , Biomarcadores , Carbono , Condrossarcoma/radioterapia , Doxorrubicina
8.
Front Med (Lausanne) ; 10: 1197846, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37415761

RESUMO

Due to combined therapeutical emissions, a high linear energy transfer Auger-electrons with the longer ranged ß- particles, 64Cu-based radiopharmaceuticals raise particular theragnostic interest in cancer, by joined therapeutic and real-time PET imaging properties. The in vitro study aimed to investigate the biological and molecular background of 64CuCl2 therapy by analyzing the damages and stress responses inflicted in various human normal and tumor cell lines. Colon (HT29 and HCT116) and prostate carcinoma (DU145) cell lines, as well as human normal BJ fibroblasts, were treated up to 72 h with 2-40 MBq/mL 64CuCl2. Radioisotope uptake and retention were assessed, and cell viability/death, DNA damage, oxidative stress, and the expression of 84 stress genes were investigated at various time points after [64Cu]CuCl2 addition. All the investigated cells incorporated 64Cu ions similarly, independent of their tumoral or normal status, but their fate after exposure to [64Cu]CuCl2 was cell-dependent. The most striking cytotoxic effects of the radioisotope were registered in colon carcinoma HCT116 cells, for which a substantial decrease in the number of metabolically active cells, and an increased DNA damage and oxidative stress were registered. The stress gene expression study highlighted the activation of both death and repair mechanisms in these cells, related to extrinsic apoptosis, necrosis/necroptosis or autophagy, and cell cycle arrest, nucleotide excision repair, antioxidant, and hypoxic responses, respectively. The in vitro study indicated that 40 MBq/mL [64Cu]CuCl2 delivers a therapeutic effect in human colon carcinoma, but its use is limited by harmful, yet lower effects on normal fibroblasts. The exposure of tumor cells to 20 MBq/mL [64Cu]CuCl2, might be used for a softer approach aiming for a lower radiotoxicity in normal fibroblasts as compared to tumor cells. This radioactive concentration was able to induce a persistent decrease in the number of metabolically active cells, accompanied by DNA damage and oxidative stress, associated with significant changes in stress gene expression in HCT116 colon cancer cells.

9.
Sci Rep ; 11(1): 12651, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34135382

RESUMO

Intense electromagnetic fields (EMFs) induce DNA double stranded breaks (DSBs) in exposed lymphocytes.We study developing pre-B lymphocytes following V(D)J recombination at their Immunoglobulin light chain loci (IgL). Recombination physiologically induces DNA DSBs, and we tested if low doses of EMF irradiation affect this developmental stage. Recombining pre-B cells, were exposed for 48 h to low intensity EMFs (maximal radiative power density flux S of 9.5 µW/cm2 and electric field intensity 3 V/m) from waves of frequencies ranging from 720 to 1224 MHz. Irradiated pre-B cells show decreased levels of recombination, reduction which is dependent upon the power dose and most remarkably upon the frequency of the applied EMF. Although 50% recombination reduction cannot be obtained even for an S of 9.5 µW/cm2 in cells irradiated at 720 MHz, such an effect is reached in cells exposed to only 0.45 µW/cm2 power with 950 and 1000 MHz waves. A maximal four-fold recombination reduction was measured in cells exposed to 1000 MHz waves with S from 0.2 to 4.5 µW/cm2 displaying normal levels of γH2AX phosphorylated histone. Our findings show that developing B cells exposure to low intensity EMFs can affect the levels of production and diversity of their antibodies repertoire.


Assuntos
Campos Eletromagnéticos , Células Precursoras de Linfócitos B/efeitos da radiação , Ondas de Rádio , Animais , Anticorpos/efeitos da radiação , Linhagem Celular , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Camundongos , Terapia por Radiofrequência/tendências
10.
Gels ; 7(4)2021 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-34842675

RESUMO

Biocompatibility, biodegradability, shear tinning behavior, quick gelation and an easy crosslinking process makes alginate one of the most studied polysaccharides in the field of regenerative medicine. The main purpose of this study was to obtain tissue-like materials suitable for use in bone regeneration. In this respect, alginate and several types of clay were investigated as components of 3D-printing, nanocomposite inks. Using the extrusion-based nozzle, the nanocomposites inks were printed to obtain 3D multilayered scaffolds. To observe the behavior induced by each type of clay on alginate-based inks, rheology studies were performed on composite inks. The structure of the nanocomposites samples was examined using Fourier Transform Infrared Spectrometry and X-ray Diffraction (XRD), while the morphology of the 3D-printed scaffolds was evaluated using Electron Microscopy (SEM, TEM) and Micro-Computed Tomography (Micro-CT). The swelling and dissolvability of each composite scaffold in phosfate buffer solution were followed as function of time. Biological studies indicated that the cells grew in the presence of the alginate sample containing unmodified clay, and were able to proliferate and generate calcium deposits in MG-63 cells in the absence of specific signaling molecules. This study provides novel information on potential manufacturing methods for obtaining nanocomposite hydrogels suitable for 3D printing processes, as well as valuable information on the clay type selection for enabling accurate 3D-printed constructs. Moreover, this study constitutes the first comprehensive report related to the screening of several natural clays for the additive manufacturing of 3D constructs designed for bone reconstruction therapy.

11.
Technol Cancer Res Treat ; 18: 1533033819871309, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31495269

RESUMO

Chondrosarcomas are malignant tumors of the cartilage that are chemoresistant and radioresistant to X-rays. This restricts the treatment options essential to surgery. In this study, we investigated the sensitivity of chondrosarcoma to X-rays and C-ions in vitro. The sensitivity of 4 chondrosarcoma cell lines (SW1353, CH2879, OUMS27, and L835) was determined by clonogenic survival assays and cell cycle progression. In addition, biomarkers of DNA damage responses were analyzed in the SW1353 cell line. Chondrosarcoma cells showed a heterogeneous sensitivity toward irradiation. Chondrosarcoma cell lines were more sensitive to C-ions exposure compared to X-rays. Using D10 values, the relative biological effectiveness of C-ions was higher (relative biological effectiveness = 5.5) with cells resistant to X-rays (CH2879) and lower (relative biological effectiveness = 3.7) with sensitive cells (L835). C-ions induced more G2 phase blockage and micronuclei in SW1353 cells as compared to X-rays with the same doses. Persistent unrepaired DNA damage was also higher following C-ions irradiation. These results indicate that chondrosarcoma cell lines displayed a heterogeneous response to conventional radiation treatment; however, treatment with C-ions irradiation was more efficient in killing chondrosarcoma cells, compared to X-rays.


Assuntos
Condrossarcoma/radioterapia , Transferência Linear de Energia , Radiografia , Raios X/efeitos adversos , Apoptose/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos da radiação , Condrossarcoma/patologia , Dano ao DNA/efeitos da radiação , Relação Dose-Resposta à Radiação , Humanos , Radiação Ionizante , Eficiência Biológica Relativa
12.
J Cell Commun Signal ; 13(3): 343-356, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30903603

RESUMO

While the dose-response relationship of radiation-induced bystander effect (RIBE) is controversial at low and high linear energy transfer (LET), mechanisms and effectors of cell-to-cell communication stay unclear and highly dependent of cell type. In the present study, we investigated the capacity of chondrocytes in responding to bystander factors released by chondrosarcoma cells irradiated at different doses (0.05 to 8 Gy) with X-rays and C-ions. Following a medium transfer protocol, cell survival, proliferation and DNA damages were quantified in bystander chondrocytes. The bystander factors secreted by chondrosarcoma cells were characterized. A significant and major RIBE response was observed in chondrocyte cells (T/C-28a2) receiving conditioned medium from chondrosarcoma cells (SW1353) irradiated with 0.1 Gy of X-rays and 0.05 Gy of C-ions, resulting in cell survivals of 36% and 62%, respectively. Micronuclei induction in bystander cells was observed from the same low doses. The cell survival results obtained by clonogenic assays were confirmed using impedancemetry. The bystander activity was vanished after a heat treatment or a dilution of the conditioned media. The cytokines which are well known as bystander factors, TNF-α and IL-6, were increased as a function of doses and LET according to an ELISA multiplex analysis. Together, the results demonstrate that irradiated chondrosarcoma cells can communicate stress factors to non-irradiated chondrocytes, inducing a wide and specific bystander response related to both doses and LET.

13.
Oxid Med Cell Longev ; 2018: 1391387, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30116473

RESUMO

Impaired mitochondrial function and accumulation of DNA damage have been recognized as hallmarks of age-related diseases. Mitochondrial dysfunction initiates protective signalling mechanisms coordinated at nuclear level particularly by modulating transcription of stress signalling factors. In turn, cellular response to DNA lesions comprises a series of interconnected complex protective pathways, which require the energetic and metabolic support of the mitochondria. These are involved in intracellular as well as in extracellular signalling of damage. Here, we have initiated a study that addresses how mitochondria-nucleus communication may occur in conditions of combined mitochondrial dysfunction and genotoxic stress and what are the consequences of this interaction on the cell system. In this work, we used cells deficient for PINK1, a mitochondrial kinase involved in mitochondrial quality control whose loss of function leads to the accumulation of dysfunctional mitochondria, challenged with inducers of DNA damage, namely, ionizing radiation and the radiomimetic bleomycin. Combined stress at the level of mitochondria and the nucleus impairs both mitochondrial and nuclear functions. Our findings revealed exacerbated sensibility to genotoxic stress in PINK1-deficient cells. The same cells showed an impaired induction of bystander phenomena following stress insults. However, these cells responded adaptively when a challenge dose was applied subsequently to a low-dose treatment to the cells. The data demonstrates that PINK1 modulates intracellular and intercellular signalling pathways, particularly adaptive responses and transmission of bystander signalling, two facets of the cell-protective mechanisms against detrimental agents.


Assuntos
Dano ao DNA/genética , Proteínas Quinases/genética , Humanos , Proteínas Quinases/metabolismo , Transdução de Sinais
14.
Mutat Res ; 771: 13-20, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25771975

RESUMO

Physical or chemical stress applied to a cell system trigger a signal cascade that is transmitted to the neighboring cell population in a process known as bystander effect. Despite its wide occurrence in biological systems this phenomenon is mainly documented in cancer treatments. Thus understanding whether the bystander effect acts as an adaptive priming element for the neighboring cells or a sensitization factor is critical in designing treatment strategies. Here we characterize the bystander effects induced by bleomycin, a DNA-damaging agent, and compartmental stress responses associated with this phenomenon. Mouse fibroblasts were treated with increasing concentrations of bleomycin and assessed for DNA damage, cell death and induction of compartmental stress response (endoplasmic reticulum, mitochondrial and cytoplasmic stress). Preconditioned media were used to analyze bystander damage using the same end-points. Bleomycin induced bystander response was reflected primarily in increased DNA damage. This was dependent on the concentration of bleomycin and time of media conditioning. Interestingly, we found that ROS but not NO are involved in the transmission of the bystander effect. Consistent transcriptional down-regulation of the stress response factors tested (i.e. BiP, mtHsp60, Hsp70) occurred in the direct effect indicating that bleomycin might induce an arrest of transcription correlated with decreased survival. We observed the opposite trend in the bystander effect, with specific stress markers appearing increased and correlated with increased survival. These data shed new light on the potential role of stress pathways activation in bystander effects and their putative impact on the pro-survival pro-death balance.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Bleomicina/farmacologia , Efeito Espectador/efeitos dos fármacos , Dano ao DNA , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fibroblastos/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular , Chaperonina 60/biossíntese , Citoplasma/metabolismo , Regulação para Baixo/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico HSP70/biossíntese , Proteínas de Choque Térmico/biossíntese , Camundongos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA