Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nat Biomed Eng ; 3(2): 137-146, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30911429

RESUMO

How common polymorphisms in noncoding genome regions can regulate cellular function remains largely unknown. Here we show that cardiac fibrosis, mimicked using a hydrogel with controllable stiffness, affects the regulation of the phenotypes of human cardiomyocytes by a portion of the long noncoding RNA ANRIL, the gene of which is located in the disease-associated 9p21 locus. In a physiological environment, cultured cardiomyocytes derived from induced pluripotent stem cells obtained from patients who are homozygous for cardiovascular-risk alleles (R/R cardiomyocytes) or from healthy individuals who are homozygous for nonrisk alleles contracted synchronously, independently of genotype. After hydrogel stiffening to mimic fibrosis, only the R/R cardiomyocytes exhibited asynchronous contractions. These effects were associated with increased expression of the short ANRIL isoform in R/R cardiomyocytes, which induced a c-Jun N-terminal kinase (JNK) phosphorylation-based mechanism that impaired gap junctions (particularly, loss of connexin-43 expression) following stiffening. Deletion of the risk locus or treatment with a JNK antagonist was sufficient to maintain gap junctions and prevent asynchronous contraction of cardiomyocytes. Our findings suggest that mechanical changes in the microenvironment of cardiomyocytes can activate the regulation of their function by noncoding loci.

2.
Nat Biomed Eng ; 3(2): 147-157, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30923642

RESUMO

Dilated cardiomyopathy (DCM) is a leading cause of morbidity and mortality worldwide; yet how genetic variation and environmental factors impact DCM heritability remains unclear. Here, we report that compound genetic interactions between DNA sequence variants contribute to the complex heritability of DCM. By using genetic data from a large family with a history of DCM, we discovered that heterozygous sequence variants in the TROPOMYOSIN 1 (TPM1) and VINCULIN (VCL) genes cose-gregate in individuals affected by DCM. In vitro studies of patient-derived and isogenic human-pluripotent-stem-cell-derived cardio-myocytes that were genome-edited via CRISPR to create an allelic series of TPM1 and VCL variants revealed that cardiomyocytes with both TPM1 and VCL variants display reduced contractility and sarcomeres that are less organized. Analyses of mice genetically engineered to harbour these human TPM1 and VCL variants show that stress on the heart may also influence the variable penetrance and expressivity of DCM-associated genetic variants in vivo. We conclude that compound genetic variants can interact combinatorially to induce DCM, particularly when influenced by other disease-provoking stressors.


Assuntos
Cardiomiopatia Dilatada/genética , Predisposição Genética para Doença , Variação Genética , Animais , Cardiomiopatia Dilatada/fisiopatologia , Matriz Extracelular/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Padrões de Herança/genética , Masculino , Camundongos , Modelos Biológicos , Contração Muscular/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Linhagem , Células-Tronco Pluripotentes/metabolismo , Regulação para Cima/genética
3.
Mol Biol Cell ; 28(14): 1950-1958, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28495800

RESUMO

Motor neuron (MN) diseases are progressive disorders resulting from degeneration of neuromuscular junctions (NMJs), which form the connection between MNs and muscle fibers. NMJ-in-a-dish models have been developed to examine human MN-associated dysfunction with disease; however such coculture models have randomly oriented myotubes with immature synapses that contract asynchronously. Mechanically patterned (MP) extracellular matrix with alternating soft and stiff stripes improves current NMJ-in-a-dish models by inducing both mouse and human myoblast durotaxis to stripes where they aligned, differentiated, and fused into patterned myotubes. Compared to conventional culture on rigid substrates or unpatterned hydrogels, MP substrates supported increased differentiation and fusion, significantly larger acetylcholine (ACh) receptor clusters, and increased expression of MuSK and Lrp4, two cell surface receptors required for NMJ formation. Robust contractions were observed when mouse myotubes were stimulated by ACh, with twitch duration and frequency most closely resembling those for mature muscle on MP substrates. Fused myotubes, when cocultured with MNs, were able to form even larger NMJs. Thus MP matrices produce more functionally active NMJs-in-a-dish, which could be used to elucidate disease pathology and facilitate drug discovery.


Assuntos
Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiologia , Junção Neuromuscular/metabolismo , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Técnicas de Cocultura , Humanos , Proteínas Relacionadas a Receptor de LDL , Camundongos , Neurônios Motores/metabolismo , Neurônios Motores/fisiologia , Desenvolvimento Muscular , Músculo Esquelético/metabolismo , Mioblastos/citologia , Receptores Proteína Tirosina Quinases , Receptores Colinérgicos , Células-Tronco/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA