Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
J Virol ; 98(3): e0194423, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38421166

RESUMO

Since the first human infection reported in 2013, H7N9 avian influenza virus (AIV) has been regarded as a serious threat to human health. In this study, we sought to identify the virulence determinant of the H7N9 virus in mammalian hosts. By comparing the virulence of the SH/4664 H7N9 virus, a non-virulent H9N2 virus, and various H7N9-H9N2 hybrid viruses in infected mice, we first pinpointed PB2 as the primary viral factor accounting for the difference between H7N9 and H9N2 in mammalian virulence. We further analyzed the in vivo effects of individually mutating H7N9 PB2 residues different from the closely related H9N2 virus and consequently found residue 473, alongside the well-known residue 627, to be critical for the virulence of the H7N9 virus in mice and the activity of its reconstituted viral polymerase in mammalian cells. The importance of PB2-473 was further strengthened by studying reverse H7N9 substitutions in the H9N2 background. Finally, we surprisingly found that species-specific usage of ANP32A, a family member of host factors connecting with the PB2-627 polymorphism, mediates the contribution of PB2 473 residue to the mammalian adaption of AIV polymerase, as the attenuating effect of PB2 M473T on the viral polymerase activity and viral growth of the H7N9 virus could be efficiently complemented by co-expression of chicken ANP32A but not mouse ANP32A and ANP32B. Together, our studies uncovered the PB2 473 residue as a novel viral host range determinant of AIVs via species-specific co-opting of the ANP32 host factor to support viral polymerase activity.IMPORTANCEThe H7N9 avian influenza virus has been considered to have the potential to cause the next pandemic since the first case of human infection reported in 2013. In this study, we identified PB2 residue 473 as a new determinant of mouse virulence and mammalian adaptation of the viral polymerase of the H7N9 virus and its non-pathogenic H9N2 counterparts. We further demonstrated that the variation in PB2-473 is functionally linked to differential co-opting of the host ANP32A protein in supporting viral polymerase activity, which is analogous to the well-known PB2-627 polymorphism, albeit the two PB2 positions are spatially distant. By providing new mechanistic insight into the PB2-mediated host range determination of influenza A viruses, our study implicated the potential existence of multiple PB2-ANP32 interfaces that could be targets for developing new antivirals against the H7N9 virus as well as other mammalian-adapted influenza viruses.


Assuntos
Subtipo H7N9 do Vírus da Influenza A , Influenza Humana , Proteínas Nucleares , Proteínas de Ligação a RNA , Animais , Humanos , Camundongos , Subtipo H7N9 do Vírus da Influenza A/metabolismo , Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Vírus da Influenza A Subtipo H9N2 , Influenza Humana/virologia , Mamíferos , Proteínas Nucleares/metabolismo , Nucleotidiltransferases/metabolismo , Proteínas de Ligação a RNA/metabolismo , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Virulência , Replicação Viral
2.
J Virol ; 96(9): e0037322, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35404081

RESUMO

M2 protein of influenza virus plays an important role in virus budding, including membrane scission and vRNP packaging. Three hydrophobic amino acids (91F, 92V, and 94I) at the intracellular domain of the M2 protein constitute a hydrophobic motif, also known as the LC3-interacting region (LIR), whereas the role of this motif remains largely unclear. To explore the role of the 91-94 hydrophobic motif for influenza virus, all three hydrophobic amino acids were mutated to either hydrophilic S or hydrophobic A, resulting in two mutant viruses (WSN-M2/SSS and WSN-M2/AAA) in the background of WSN/H1N1. The results showed that the budding ability of the M2/SSS protein was inhibited and the bilayer membrane integrity of the WSN-M2/SSS virion was impaired based on transmission electron microscopy (TEM), which in turn abolished the resistance to trypsin treatment. Moreover, the mutant WSN-M2/SSS was dramatically attenuated in mice. In contrast, the AAA mutations did not have a significant effect on the budding of the M2 proteins or the bilayer membrane integrity of the viruses, and the mutant WSN-M2/AAA was still lethal to mice. In addition, although the 91-94 motif is an LIR, knocking out of the LC3 protein of A549 cells did not significantly affect the membrane integrity of the influenza viruses propagated on the LC3KO cells, which suggested that the 91-94 hydrophobic motif affected the viral membrane integrity and budding is independent of the LC3 protein. Overall, the hydrophobicity of the 91-94 motif is crucial for the budding of M2, bilayer membrane integrity, and pathogenicity of the influenza viruses. IMPORTANCE M2 plays a crucial role in the influenza virus life cycle. However, the function of the C-terminal intracellular domain of M2 protein remains largely unclear. In this study, we explored the function of the 91-94 hydrophobic motif of M2 protein. The results showed that the reduction of the hydrophobicity of the 91-94 motif significantly affected the budding ability of the M2 protein and impaired the bilayer membrane integrity of the mutant virus. The mouse study showed that the reduction of the hydrophobicity of the 91-94 motif significantly attenuated the mutant virus. All of the results indicated that the hydrophobicity of the 91-94 motif of the M2 protein plays an important role in budding, membrane integrity, and pathogenicity of influenza virus. Our study offers insights into the mechanism of influenza virus morphogenesis, particularly into the roles of the 91-94 hydrophobic motif of M2 in virion assembly and the pathogenicity of the influenza viruses.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Proteínas da Matriz Viral , Proteínas Viroporinas , Liberação de Vírus , Aminoácidos/metabolismo , Animais , Interações Hidrofóbicas e Hidrofílicas , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/fisiologia , Camundongos , Proteínas da Matriz Viral/metabolismo , Proteínas Viroporinas/metabolismo
3.
J Virol ; 95(3)2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33177197

RESUMO

Neuraminidase (NA) has multiple functions in the life cycle of influenza virus, especially in the late stage of virus replication. Both of hemagglutinin (HA) and NA are highly glycosylated proteins. N-linked glycosylation (NLG) of HA has been reported to contribute to immune escape and virulence of influenza viruses. However, the function of NLG of NA remains largely unclear. In this study, we found that NLG is critical for budding ability of NA. Tunicamycin treatment or NLG knockout significantly inhibited the budding of NA. Further studies showed that the NLG knockout caused attenuation of virus in vitro and in vivo Notably, the NLG at 219 position plays an important role in the budding, replication, and virulence of H1N1 influenza virus. To explore the underlying mechanism, the unfolded protein response (UPR) was determined in NLG knockout NA overexpressed cells, which showed that the mutant NA was mainly located in the endoplasmic reticulum (ER), the UPR markers BIP and p-eIF2α were upregulated, and XBP1 was downregulated. All the results indicated that NLG knockout NA was stacked in the ER and triggered UPR, which might shut down the budding process of NA. Overall, the study shed light on the function of NLG of NA in virus replication and budding.IMPORTANCE NA is a highly glycosylated protein. Nevertheless, how the NLG affects the function of NA protein remains largely unclear. In this study, we found that NLG plays important roles in budding and Neuraminidase activity of NA protein. Loss of NLG attenuated viral budding and replication. In particular, the 219 NLG site mutation significantly attenuated the replication and virulence of H1N1 influenza virus in vitro and in vivo, which suggested that NLG of NA protein is a novel virulence marker for influenza viruses.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A/fisiologia , Neuraminidase/metabolismo , Infecções por Orthomyxoviridae/virologia , Proteínas Virais/metabolismo , Virulência , Replicação Viral , Animais , Cães , Feminino , Glicosilação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Neuraminidase/genética , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/patologia , Proteínas Virais/genética
4.
J Virol ; 95(19): e0101921, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34287044

RESUMO

Based on our previous studies, we show that the M gene is critical for the replication and pathogenicity of the chimeric H17 bat influenza virus (Bat09:mH1mN1) by replacing the bat M gene with those from human and swine influenza A viruses. However, the key amino acids of the M1 and/or M2 proteins that are responsible for virus replication and pathogenicity remain unknown. In this study, replacement of the PR8 M gene with the Eurasian avian-like M gene from the A/California/04/2009 pandemic H1N1 virus significantly decreased viral replication in both mammalian and avian cells in the background of the chimeric H17 bat influenza virus. Further studies revealed that M1 was more crucial for viral growth and pathogenicity than M2 and that the amino acid residues M1-41V and M2-27A were responsible for these characteristics in cells and in mice. These key residues of the M1 and M2 proteins identified in this study might be important for influenza virus surveillance and could be used to produce live attenuated vaccines in the future. IMPORTANCE The M1 and M2 proteins influence the morphology, replication, virulence, and transmissibility of influenza viruses. Although a few key residues in the M1 and M2 proteins have been identified, whether other residues of the M1 and M2 proteins are involved in viral replication and pathogenicity remains to be discovered. In the background of the chimeric H17 bat influenza virus, the Eurasian avian-like M gene from the A/California/04/2009 virus significantly decreased viral growth in mammalian and avian cells. Further study showed that M1 was implicated more than M2 in viral growth and pathogenicity in vitro and in vivo and that the key amino acid residues M1-41V and M2-27A were responsible for these characteristics in cells and in mice. These key residues of the M1 and M2 proteins could be used for influenza virus surveillance and live attenuated vaccine applications in the future. These findings provide important contributions to knowledge of the genetic basis of the virulence of influenza viruses.


Assuntos
Vírus da Influenza A Subtipo H1N1/genética , Infecções por Orthomyxoviridae/virologia , Orthomyxoviridae/crescimento & desenvolvimento , Orthomyxoviridae/patogenicidade , Proteínas da Matriz Viral/metabolismo , Aminoácidos/metabolismo , Animais , Linhagem Celular , Quirópteros , Genes Virais , Humanos , Pulmão/virologia , Camundongos , Orthomyxoviridae/genética , Vírus Reordenados/genética , Vírus Reordenados/crescimento & desenvolvimento , Vírus Reordenados/patogenicidade , Conchas Nasais/virologia , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/genética , Virulência , Replicação Viral
5.
Virol J ; 19(1): 20, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35078489

RESUMO

BACKGROUND: Reassortment between human and avian influenza viruses (AIV) may result in novel viruses with new characteristics that may threaten human health when causing the next flu pandemic. A particular risk may be posed by avian influenza viruses of subtype H9N2 that are currently massively circulating in domestic poultry in Asia and have been shown to infect humans. In this study, we investigate the characteristics and compatibility of a human H1N1 virus with avian H9N2 derived genes. METHODS: The polymerase activity of the viral ribonucleoprotein (RNP) complex as combinations of polymerase-related gene segments derived from different reassortment events was tested in luciferase reporter assays. Reassortant viruses were generated by reverse genetics. Gene segments of the human WSN-H1N1 virus (A/WSN/1933) were replaced by gene segments of the avian A2093-H9N2 virus (A/chicken/Jiangsu/A2093/2011), which were both the Hemagglutinin (HA) and Neuraminidase (NA) gene segments in combination with one of the genes involved in the RNP complex (either PB2, PB1, PA or NP). The growth kinetics and virulence of reassortant viruses were tested on cell lines and mice. The reassortant viruses were then passaged for five generations in MDCK cells and mice lungs. The HA gene of progeny viruses from different passaging paths was analyzed using Next-Generation Sequencing (NGS). RESULTS: We discovered that the avian PB1 gene of H9N2 increased the polymerase activity of the RNP complex in backbone of H1N1. Reassortant viruses were able to replicate in MDCK and DF1 cells and mice. Analysis of the NGS data showed a higher substitution rate for the PB1-reassortant virus. In particular, for the PB1-reassortant virus, increased virulence for mice was measured by increased body weight loss after infection in mice. CONCLUSIONS: The higher polymerase activity and increased mutation frequency measured for the PB1-reassortant virus suggests that the avian PB1 gene of H9N2 may drive the evolution and adaptation of reassortant viruses to the human host. This study provides novel insights in the characteristics of viruses that may arise by reassortment of human and avian influenza viruses. Surveillance for infections with H9N2 viruses and the emergence of the reassortant viruses in humans is important for pandemic preparedness.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H9N2 , Vírus Reordenados , Proteínas Virais , Animais , Galinhas , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H9N2/genética , Influenza Aviária/virologia , Influenza Humana/virologia , Camundongos , Taxa de Mutação , Vírus Reordenados/genética , Proteínas Virais/genética
6.
Microb Pathog ; 157: 104992, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34044053

RESUMO

Previous studies have shown that chimeric bat influenza viruses can be generated by reverse genetic system. However, the roles of the surface or internal genes of chimeric bat influenza viruses in viral replication and virulence in different host species were still not completely understood. In this study, we generated a chimeric H9N2 bat virus with both HA and NA surface genes from the avian A2093/H9N2 virus and compared its replication and virulence with the chimeric H1N1 bat virus with both HA and NA from the PR8/H1N1 virus in vitro and in mice. The chimeric H1N1 virus showed significantly higher replication in mammalian and avian cells and significantly higher virulence in mice than the chimeric H9N2 virus. Moreover, the chimeric H9N2 virus with the bat influenza internal M gene showed a higher replication in mammalian cells than in avian cells. While the chimeric H9N2 virus with the avian-origin viral M gene displayed a higher replication than that with the bat influenza M gene in avian cells, which likely resulted from increased receptor binding ability to α 2,3 sialic acid linked glycans of the former virus. Our study indicates that bat influenza internal genes are permissive in both mammalian and avian cells, and the bat influenza internal M gene shows more compatibility in mammals than in the avian host. Although the surface genes play more critical roles for viral replication in different host substrates, influenza M gene also potentially impacts on replication, virulence and host tropism.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Infecções por Orthomyxoviridae , Animais , Vírus da Influenza A Subtipo H9N2/genética , Mamíferos , Camundongos , Infecções por Orthomyxoviridae/veterinária , Virulência , Replicação Viral
7.
Nanomedicine ; 27: 102209, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32305593

RESUMO

Biodegradable nanomaterials can protect antigens from degradation, promote cellular absorption, and enhance immune responses. We constructed a eukaryotic plasmid [pCAGGS-opti441-hemagglutinin (HA)] by inserting the optimized HA gene fragment of H9N2 AIV into the pCAGGS vector. The pCAGGS-opti441-HA/DGL was developed through packaging the pCAGGS-opti441-HA with dendrigraft poly-l-lysines (DGLs). DGL not only protected the pCAGGS-opti441-HA from degradation, but also exhibited high transfection efficiency. Strong cellular immune responses were induced in chickens immunized with the pCAGGS-opti441-HA/DGL. The levels of IFN-γ and IL-2, and lymphocyte transformation rate of the vaccinated chickens increased at the third week post the immunization. For the vaccinated chickens, T lymphocytes were activated and proliferated, the numbers of CD3+CD4+ and CD4+/CD8+ increased, and the chickens were protected completely against H9N2 AIV challenge. This study provides a method for the development of novel AIV vaccines, and a theoretical basis for the development of safe and efficient gene delivery carriers.


Assuntos
Anticorpos Antivirais/imunologia , Vacinas contra Influenza/farmacologia , Influenza Aviária/tratamento farmacológico , Vacinas de DNA/farmacologia , Animais , Anticorpos Antivirais/farmacologia , Formação de Anticorpos/efeitos dos fármacos , Formação de Anticorpos/imunologia , Galinhas/imunologia , Galinhas/virologia , Vírus da Influenza A Subtipo H9N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H9N2/imunologia , Vírus da Influenza A Subtipo H9N2/patogenicidade , Vacinas contra Influenza/química , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Influenza Aviária/imunologia , Influenza Aviária/virologia , Polilisina/química , Polilisina/farmacologia , Vacinas de DNA/química , Vacinas de DNA/imunologia
8.
J Virol ; 92(17)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29899104

RESUMO

Duck Tembusu virus (TMUV), like other mosquito-borne flaviviruses, such as Japanese encephalitis virus, West Nile virus, and Bagaza virus, is able to transmit vector-independently. To date, why these flaviviruses can be transmitted without mosquito vectors remains poorly understood. To explore the key molecular basis of flavivirus transmissibility, we compared virus replication and transmissibility of an early and a recent TMUV in ducks. The recent TMUV strain FX2010 replicated systemically and transmitted efficiently in ducks, while the replication of early strain MM1775 was limited and did not transmit among ducks. The TMUV envelope protein and its domain I were responsible for tissue tropism and transmissibility. The mutation S156P in the domain I resulted in disruption of N-linked glycosylation at amino acid 154 of the E protein and changed the conformation of "150 loop" of the E protein, which reduced virus replication in lungs and abrogated transmission in ducks. These data indicate that the 156S in the envelope protein is critical for TMUV tissue tropism and transmissibility in ducks in the absence of mosquitos. Our findings provide novel insights on understanding TMUV transmission among ducks.IMPORTANCE Tembusu virus, similar to other mosquito-borne flaviviruses such as WNV, JEV, and BAGV, can be transmitted without the presence of mosquito vectors. We demonstrate that the envelope protein of TMUV and its amino acid (S) at position 156 is responsible for tissue tropism and transmission in ducks. The mutation S156P results in disruption of N-linked glycosylation at amino acid 154 of the E protein and changes the conformation of "150 loop" of the E protein, which induces limited virus replication in lungs and abrogates transmission between ducks. Our findings provide new knowledge about TMUV transmission among ducks.


Assuntos
Transmissão de Doença Infecciosa , Patos , Infecções por Flavivirus/veterinária , Flavivirus/fisiologia , Mutação de Sentido Incorreto , Proteínas do Envelope Viral/metabolismo , Tropismo Viral , Animais , Flavivirus/genética , Infecções por Flavivirus/transmissão , Infecções por Flavivirus/virologia , Pulmão/virologia , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Conformação Proteica , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Replicação Viral
9.
Virol J ; 16(1): 46, 2019 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-30975159

RESUMO

BACKGROUND: Compared with chickens, ducks are normally resistant to avian influenza virus without clinical signs while they habor almost all subtypes of influenza A viruses. To date, however the mechanism for duck anti-influenza has not been completely understood. The H9N2 avian influenza virus (AIV) is the most prevalent subtype of influenza A virus that infects chickens and ducks in China. However, H9N2 AIV replication and the host immune response in these domestic birds has not been systematically investigated. METHODS: In the present study, we compared the kinetics and magnitudes of antibody responses in chickens and ducks after infection with H9N2 AIV by the intranasal route or intravenous route. Furthermore, we determined the viral replication and distribution in chickens and ducks after infection with H9N2 AIV by the intravenous route. RESULTS: Our results revealed that the antibody response was rapid and robust in ducks than in chickens at early time (2-3dpi) after intravenous infection with H9N2 AIVs, while delayed and lower antibody detected in ducks than in chickens after intranasal infection with H9N2 AIVs. The virus was detected in multiple organs tissues in chickens but not in ducks infected by the intravenous route. CONCLUSIONS: Our results provide the evidence that humoral immune response could play a critical role in duck resistance for influenza, which expands our knowledge on duck anti-influenza characteristics.


Assuntos
Anticorpos Antivirais/sangue , Galinhas/imunologia , Patos/imunologia , Imunidade Humoral , Influenza Aviária/imunologia , Administração Intravenosa , Animais , Galinhas/virologia , Resistência à Doença , Patos/virologia , Vírus da Influenza A Subtipo H9N2/fisiologia , Carga Viral , Replicação Viral
10.
J Virol ; 90(21): 9806-9825, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27558420

RESUMO

H9N2 avian influenza virus (AIV) has an extended host range, but the molecular basis underlying H9N2 AIV transmission to mammals remains unclear. We isolated more than 900 H9N2 AIVs in our 3-year surveillance in live bird markets in China from 2009 to 2012. Thirty-seven representative isolates were selected for further detailed characterization. These isolates were categorized into 8 genotypes (B64 to B71) and formed a distinct antigenic subgroup. Three isolates belonging to genotype B69, which is a predominant genotype circulating in China, replicated efficiently in mice, while the viruses tested in parallel in other genotypes replicated poorly, although they, like the three B69 isolates, have a leucine at position 226 in the hemagglutinin (HA) receptor binding site, which is critical for binding human type sialic acid receptors. Further molecular and single mutation analysis revealed that a valine (V) residue at position 190 in HA is responsible for efficient replication of these H9N2 viruses in mice. The 190V in HA does not affect virus receptor binding specificity but enhances binding affinity to human cells and lung tissues from mouse and humans. All these data indicate that the 190V in HA is one of the important determinants for H9N2 AIVs to cross the species barrier to infect mammals despite multiple genes conferring adaptation and replication of H9N2 viruses in mammals. Our findings provide novel insights on understanding host range expansion of H9N2 AIVs. IMPORTANCE: Influenza virus hemagglutinin (HA) is responsible for binding to host cell receptors and therefore influences the viral host range and pathogenicity in different species. We showed that the H9N2 avian influenza viruses harboring 190V in the HA exhibit enhanced virus replication in mice. Further studies demonstrate that 190V in the HA does not change virus receptor binding specificity but enhances virus binding affinity of the H9N2 virus to human cells and attachment to lung tissues from humans and mouse. Our findings suggest that more attention should be given to the H9N2 AIVs with HA-190V during surveillance due to their potential threat to mammals, including humans.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A Subtipo H9N2/genética , Receptores de Superfície Celular/metabolismo , Replicação Viral/genética , Células A549 , Animais , Aves , Linhagem Celular Tumoral , Replicação do DNA/genética , Humanos , Influenza Aviária/metabolismo , Influenza Aviária/virologia , Influenza Humana/metabolismo , Influenza Humana/virologia , Pulmão/metabolismo , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/virologia , Filogenia , Ligação Viral
11.
Vet Res ; 47(1): 67, 2016 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-27342800

RESUMO

To better understand the influence of different NA genes on pathogenicity of H9 viruses, three reassortant H9 viruses (rH9N1, H9N2 and rH9N3) were generated and characterized. All three viruses replicated efficiently in eggs and MDCK cells, whereas the rH9N1 and rH9N3 replicated more efficiently than H9N2 in A549 cells. The rH9N3 replicated more efficiently than rH9N1 and H9N2 viruses in mice, however, rH9N3 replicated and shed less efficiently than the H9N2 virus in chickens. Further studies indicate that N3 had higher NA activity and released virus from erythrocytes faster, which may improve the adaptation of H9 influenza virus to mammals.


Assuntos
Vírus da Influenza A Subtipo H9N2/patogenicidade , Vírus da Influenza A/patogenicidade , Influenza Aviária/virologia , Neuraminidase/genética , Infecções por Orthomyxoviridae/virologia , Células A549 , Animais , Galinhas/virologia , Cães , Genes Virais/genética , Genes Virais/fisiologia , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H9N2/fisiologia , Vírus da Influenza A/genética , Vírus da Influenza A/fisiologia , Células Madin Darby de Rim Canino , Camundongos/virologia , Camundongos Endogâmicos BALB C , Replicação Viral
12.
J Clin Microbiol ; 53(8): 2734-6, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26063866

RESUMO

The routes of transmission of a newly emerged Tembusu virus (TMUV, Flavivirus) in ducks in China remain unclear. Our epidemiological data show that TMUV is spread in winter, when mosquitos are inactive, which suggests that nonvector transmission routes are involved in the spread of TMUV. Furthermore, in vivo studies indicate that TMUV can be transmitted efficiently among ducks by both direct contact and aerosol transmission. This finding has important implications for the control of infection with this novel TMUV in the field.


Assuntos
Microbiologia do Ar , Transmissão de Doença Infecciosa , Infecções por Flavivirus/veterinária , Flavivirus/isolamento & purificação , Doenças das Aves Domésticas/transmissão , Aerossóis , Animais , China , Patos , Infecções por Flavivirus/transmissão , Infecções por Flavivirus/virologia , Doenças das Aves Domésticas/virologia
13.
Virol J ; 12: 143, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26377565

RESUMO

BACKGROUND: Wild ducks play an important role in the evolution of avian influenza viruses (AIVs). Domestic ducks in China are known to carry and spread H9N2 AIVs that are thought to have contributed internal genes for the recent outbreak of zoonotic H7N9 virus. In order to protect animal and public health, an effective vaccine is urgently needed to block and prevent the spread of H9N2 virus in ducks. We developed an inactivated H9N2 vaccine (with adjuvant Montanide ISA 70VG) based on an endemic H9N2 AIV and evaluated this vaccine in ducks. FINDINGS: The results showed that the inactivated H9N2 vaccine was able to induce a strong and fast humoral immune response in vaccinated ducks. The hemagglutination inhibition titer in the sera increased fast, and reached its peak of 12.3 log2 at 5 weeks post-vaccination in immunized birds and remained at a high level for at least 37 weeks post-vaccination. Moreover, viral shedding was completely blocked in vaccinated ducks after challenge with a homologous H9N2 AIV at both 3 and 37 weeks post-vaccination. CONCLUSIONS: The results of this study indicate that the inactivated H9N2 vaccine induces high and prolonged immune response in vaccinated ducks and are efficacious in protecting ducks from H9N2 infection.


Assuntos
Vírus da Influenza A Subtipo H9N2/imunologia , Vacinas contra Influenza/imunologia , Influenza Aviária/prevenção & controle , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Antivirais/sangue , China , Patos , Testes de Inibição da Hemaglutinação , Vacinas contra Influenza/administração & dosagem , Influenza Aviária/imunologia , Ácidos Oleicos/administração & dosagem , Resultado do Tratamento , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia , Eliminação de Partículas Virais
14.
J Virol ; 86(22): 12443, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23087108

RESUMO

A/chicken/Nanjing/908/2009(H11N2) (CK908) was isolated from a live poultry market in Nanjing, China. Using PCR and sequencing analysis, we obtained the complete genome sequences of the CK908 virus. The sequence analysis demonstrated that this H11N2 virus was a novel reassortant AIV whose PB1, PB2, PA, HA, NP, NA, M, and NS genes originated from H9N2, H7N7, H5N2, H11N8, H3N6, H6N2, H1N1, and H5N1, respectively. Knowledge regarding the complete genome sequences of the CK908 virus will be useful for epidemiological surveillance.


Assuntos
Vírus da Influenza A/genética , Aves Domésticas/virologia , Animais , DNA Viral/genética , Bases de Dados Genéticas , Genes Virais , Genoma Viral , Influenza Aviária/virologia , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
15.
J Virol ; 86(21): 11944, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23043175

RESUMO

Previous studies indicate that the H3 influenza virus has the ability to establish infection upon interspecies transmission and poses a threat to mammals. Therefore, it is important to enhance the surveillance of H3 avian influenza viruses (AIVs). In this study, A/duck/Shanghai/C84/2009(H3N2) (C84) was isolated from a live poultry market in Shanghai, China. Using PCR and sequencing analyses, we obtained the whole-genome sequence of this virus. The H3N2 virus proved to be a novel multiple-gene reassortant AIV whose genes were derived from H3N2, H4N6, H6N2, and H9N2. Knowledge regarding the complete genome sequence of the C84 virus will be useful for epidemiological surveillance.


Assuntos
Genoma Viral , Vírus da Influenza A Subtipo H3N2/genética , RNA Viral/genética , Análise de Sequência de DNA , Animais , China , Vírus da Influenza A Subtipo H3N2/classificação , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Influenza Aviária/virologia , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Aves Domésticas , Vírus Reordenados/classificação , Vírus Reordenados/genética , Vírus Reordenados/isolamento & purificação
16.
J Virol ; 86(21): 11952, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23043180

RESUMO

A/duck/Shanghai/28-1/2009(H4N2) (DK28) was isolated from a live poultry market in Shanghai, China. Using PCR and sequencing analysis, we obtained the complete genome sequences of the DK28 virus. The sequence analysis demonstrated that this H4N2 virus was a novel multiple-gene reassortant avian influenza virus (AIV) whose genes originated from H1N1, H1N3, H3N3, H4N2, and H4N6. Knowledge regarding the complete genome sequences of the DK28 virus will be useful for epidemiological surveillance.


Assuntos
Genoma Viral , Vírus da Influenza A/genética , RNA Viral/genética , Análise de Sequência de DNA , Animais , China , Patos/virologia , Genes Virais , Vírus da Influenza A/classificação , Vírus da Influenza A/isolamento & purificação , Influenza Aviária/virologia , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Vírus Reordenados/classificação , Vírus Reordenados/genética , Vírus Reordenados/isolamento & purificação
17.
Front Microbiol ; 14: 1140141, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426013

RESUMO

Since its outbreak in 2010, Tembusu virus (TMUV) has spread widely throughout China and Southeast Asia, causing significant economic losses to the poultry industry. In 2018, an attenuated vaccine called FX2010-180P (180P) was licensed for use in China. The 180P vaccine has demonstrated its immunogenicity and safety in mice and ducks. The potential use of 180P as a backbone for flavivirus vaccine development was explored by replacing the pre-membrane (prM) and envelope (E) genes of the 180P vaccine strain with those of Japanese encephalitis virus (JEV). Two chimeric viruses, 180P/JEV-prM-E and 180P/JEV-prM-ES156P with an additional E protein S156P mutation were successfully rescued and characterized. Growth kinetics studies showed that the two chimeric viruses replicated to similar titers as the parental 180P virus in cells. Animal studies also revealed that the virulence and neuroinvasiveness of the 180P/JEV-prM-E chimeric virus was decreased in mice inoculated intracerebrally (i.c.) and intranasally (i.n.), respectively, compared to the wild-type JEV strain. However, the chimeric 180P/JEV-prM-E virus was still more virulent than the parent 180P vaccine in mice. Additionally, the introduction of a single ES156P mutation in the chimeric virus 180P/JEV-prM-ES156P further attenuated the virus, which provided complete protection against challenge with a virulent JEV strain in the mouse model. These results indicated that the FX2010-180P could be used as a promising backbone for flavivirus vaccine development.

18.
Poult Sci ; 102(10): 102925, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37542938

RESUMO

DNA vaccination has great potential to treat or prevent avian influenza pandemics, but the technique may be limited by low immunogenicity and gene delivery in clinical testing. Here, to improve the immune efficacy of DNA vaccines against avian influenza, we prepared and tested the immunogenicity of 4 recombinant DNA vaccines containing 2 or 3 AIV antigens. The results revealed that chickens and mice immunized with plasmid DNA containing 3 antigens (HA gene from H9N2, and NA and HA genes from H5N1) exhibited a robust immune response than chickens and mice immunized with plasmid DNAs containing 2 antigenic genes. Subsequently, this study used pßH9N1SH5 as a model antigen to study the effect of dendritic polylysine (DGL) nanoparticles as a gene delivery system and adjuvant on antigen-specific immunity in mice models. At a ratio of 1:3 DGL/pßH9N1SH5 (w/w), the pßH9N1SH5/DGL NPs showed excellent physical and chemical properties, induced higher levels of HI antibodies, and larger CD3+/CD4+ T lymphocyte and CD3+/CD8+ T lymphocyte population, as well as the production of cytokines, namely, interferon (IFN)-γ, interleukin (IL)-2 compared with the naked pßH9N1SH5. Therefore, multiantigen gene expression methods using DGL as a delivery system may have broad application prospects in gene therapy.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A Subtipo H9N2 , Vacinas contra Influenza , Influenza Aviária , Nanopartículas , Vacinas de DNA , Animais , Camundongos , Influenza Aviária/prevenção & controle , Galinhas , Imunidade , Anticorpos Antivirais
19.
Vet Immunol Immunopathol ; 259: 110590, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36990004

RESUMO

Maternal-derived antibodies (MDAs) are one of reasons why vaccination with the H9N2 inactivated whole virus (IWV) vaccine failed in poultry. Unmethylated CpG motif-containing oligodeoxynucleotides (CpG ODN) shows great potential to overcome MDAs interference in mammals, but whether it has similar characteristics in poultry is still unknown. In the present study, different classes and various copies of CpG ODN motifs were cloned into two different plasmids (pCDNA3.1 or T vector). Immunomodulatory activities and immunoadjuvant efficacy of these CpG ODN plasmids were tested in vitro and in vivo in the presence of passively transferred antibodies (PTAs) that were used to mimic MDAs. Results showed that the T vector enriched with 30 copies of CpG-A ODN and 20 copies of CpG-B ODN (T-CpG-AB) significantly up-regulated mRNA expression of chicken-interferon-α (ch-IFN-α), chicken-interferon-ß (ch-IFN-ß) and chicken-interleukin-12 protein 40 (ch-IL-12p40). When administered as adjuvant of the H9N2 IWV vaccine, the minimal dose of T-CpG-AB plasmid was 30 µg per one-day-old chicken, which could induce strong humoral immune responses in the presence of PTAs. Furthermore, T-CpG-AB plasmid-based vaccine triggered both strong humoral immune responses and cytokines expression in the presence of PTAs in chickens. Overall, our findings suggest that T-CpG-AB plasmid can be an excellent adjuvant candidate for the H9N2 IWV vaccine to overcome MDAs interference in chickens.


Assuntos
Vírus da Influenza A Subtipo H9N2 , Vacinas contra Influenza , Influenza Aviária , Animais , Galinhas , Anticorpos Antivirais , Adjuvantes Imunológicos , Plasmídeos/genética , Vacinas de Produtos Inativados , Interferon-alfa , Oligodesoxirribonucleotídeos , Mamíferos
20.
Int J Biol Macromol ; 251: 126286, 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37579904

RESUMO

H7 avian influenza virus has caused multiple human infections and poses a severe public health threat. In response to the highly variable nature of AIVs, a novel, easily regenerated DNA vaccine has great potential in treating or preventing avian influenza pandemics. Nevertheless, DNA vaccines have many disadvantages, such as weak immunogenicity and poor in vivo delivery. To further characterize and solve these issues and develop a novel H7 AIV DNA vaccine with enhanced stability and immunogenicity, we constructed nine AIV DNA plasmids, and the immunogenicity screened showed that mice immunized with pßH7N2SH9 elicited stronger hemagglutination-inhibiting (HI) antibodies than other eight plasmid DNAs. Then, to address the susceptibility to degradation and low transfection rate of DNA vaccine in vivo, we developed pßH7N2SH9/DGL NPs by encapsulating the pßH7N2SH9 within the dendrigraft poly-l-lysines nanoparticles. As expected, these NPs exhibited excellent physical and chemical properties, were capable of promote lymphocyte proliferation, and induce stronger humoral and cellular responses than the naked pßH7N2SH9, including higher levels of HI antibodies than naked pßH7N2SH9, as well as the production of cytokines, namely, IL-2, IFN-α. Taken together, our results suggest that the construction of an immune-enhanced H7-AIV DNA nanovaccine may be a promising strategy against most influenza viruses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA