RESUMO
Epithelial tissue formation and function requires the apical-basal polarization of individual epithelial cells. Apical polarity regulators (APRs) are an evolutionarily conserved group of key factors that govern polarity and several other aspects of epithelial differentiation. APRs compose a diverse set of molecules including a transmembrane protein (Crumbs), a serine/threonine kinase (aPKC), a lipid phosphatase (PTEN), a small GTPase (Cdc42), FERM domain proteins (Moesin, Yurt), and several adaptor or scaffolding proteins (Bazooka/Par3, Par6, Stardust, Patj). These proteins form a dynamic cooperative network that is engaged in negative-feedback regulation with basolateral polarity factors to set up the epithelial apical-basal axis. APRs support the formation of the apical junctional complex and the segregation of the junctional domain from the apical membrane. It is becoming increasingly clear that APRs interact with the cytoskeleton and vesicle trafficking machinery, regulate morphogenesis, and modulate epithelial cell growth and survival. Not surprisingly, APRs have multiple fundamental links to human diseases such as cancer and blindness.
Assuntos
Polaridade Celular , Proteínas de Drosophila/metabolismo , Drosophila/citologia , Células Epiteliais/metabolismo , Células Epiteliais/fisiologia , Sequência de Aminoácidos , Animais , Proliferação de Células , Sobrevivência Celular , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Retroalimentação Fisiológica , Humanos , Junções Intercelulares/metabolismo , Dados de Sequência Molecular , MorfogêneseRESUMO
How adhesive interactions between cells generate and maintain animal tissue structure remains one of the most challenging and long-standing questions in cell and developmental biology. Adherens junctions (AJs) and the cadherin-catenin complexes at their core are therefore the subjects of intense research. Recent work has greatly advanced our understanding of the molecular organization of AJs and how cadherin-catenin complexes engage actin, microtubules and the endocytic machinery. As a result, we have gained important insights into the molecular mechanisms of tissue morphogenesis.
Assuntos
Junções Aderentes/metabolismo , Morfogênese/fisiologia , Actinas/genética , Actinas/metabolismo , Junções Aderentes/genética , Animais , Caderinas/genética , Caderinas/metabolismo , Cateninas/genética , Cateninas/metabolismo , Humanos , Microtúbulos/genética , Microtúbulos/metabolismo , Modelos Biológicos , Morfogênese/genéticaRESUMO
α-catenin is a key protein of adherens junctions (AJs) with mechanosensory properties. It also acts as a tumor suppressor that limits tissue growth. Here we analyzed the function of Drosophila α-Catenin (α-Cat) in growth regulation of the wing epithelium. We found that different α-Cat levels led to a differential activation of Hippo/Yorkie or JNK signaling causing tissue overgrowth or degeneration, respectively. α-Cat can modulate Yorkie-dependent tissue growth through recruitment of Ajuba, a negative regulator of Hippo signaling to AJs but also through a mechanism independent of Ajuba recruitment to AJs. Both mechanosensory regions of α-Cat, the M region and the actin-binding domain (ABD), contribute to growth regulation. Whereas M is dispensable for α-Cat function in the wing, individual M domains (M1, M2, M3) have opposing effects on growth regulation. In particular, M1 limits Ajuba recruitment. Loss of M1 causes Ajuba hyper-recruitment to AJs, promoting tissue-tension independent overgrowth. Although M1 binds Vinculin, Vinculin is not responsible for this effect. Moreover, disruption of mechanosensing of the α-Cat ABD affects tissue growth, with enhanced actin interactions stabilizing junctions and leading to tissue overgrowth. Together, our findings indicate that α-Cat acts through multiple mechanisms to control tissue growth, including regulation of AJ stability, mechanosensitive Ajuba recruitment, and dynamic direct F-actin interactions.
Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas com Domínio LIM/genética , Asas de Animais/crescimento & desenvolvimento , alfa Catenina/genética , Citoesqueleto de Actina/genética , Actinas/genética , Junções Aderentes/genética , Animais , Morte Celular/genética , Citoesqueleto/genética , Drosophila melanogaster/crescimento & desenvolvimento , Epitélio/crescimento & desenvolvimento , Epitélio/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Sistema de Sinalização das MAP Quinases/genética , Mecanotransdução Celular/genética , Proteínas Nucleares/genética , Domínios Proteicos/genética , Proteínas Serina-Treonina Quinases/genética , Transativadores/genética , Vinculina/genética , Asas de Animais/metabolismo , Proteínas de Sinalização YAPRESUMO
Mutations in human crumbs 1 (CRB1) are a major cause of retinal diseases that lead to blindness. CRB1 is a transmembrane protein found in the inner segment of photoreceptor cells (PRCs) and the apical membrane of Müller glia. The function of the extracellular region of CRB1 is poorly understood, although more than 80 disease-causing missense mutations have been mapped to it. We have recreated four of these mutations, affecting different extracellular domains, in Drosophila Crumbs (Crb). Crb regulates epithelial polarity and growth, and contributes to PRC differentiation and survival. The mutant Crb isoforms showed a remarkable diversity in protein abundance, subcellular distribution and ability to rescue the lack of endogenous Crb, elicit a gain-of-function phenotype or promote PRC degeneration. Interestingly, although expression of mutant isoforms led to a substantial rescue of the developmental defects seen in crb mutants, they accelerated PRC degeneration compared to that seen in retinas that lacked Crb, indicating that the function of Crb in cellular differentiation and cell survival depends on distinct molecular pathways. Several Crb mutant proteins accumulated abnormally in the rhabdomere and affected rhodopsin trafficking, suggesting that abnormal rhodopsin physiology contributes to Crb/CRB1-associated retinal degeneration.
Assuntos
Proteínas de Drosophila/genética , Proteínas do Olho/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Degeneração Retiniana/genética , Doenças Retinianas/genética , Animais , Polaridade Celular/genética , Análise Mutacional de DNA , Drosophila melanogaster/genética , Células Ependimogliais/metabolismo , Células Ependimogliais/patologia , Predisposição Genética para Doença , Humanos , Morfogênese/genética , Mutação de Sentido Incorreto/genética , Degeneração Retiniana/patologia , Doenças Retinianas/patologia , Rodopsina/genética , Rodopsina/metabolismoRESUMO
E-cadherin-mediated cell-cell adhesion is fundamental for epithelial tissue morphogenesis, physiology and repair. E-cadherin is a core transmembrane constituent of the zonula adherens (ZA), a belt-like adherens junction located at the apicolateral border in epithelial cells. The anchorage of ZA components to cortical actin filaments strengthens cell-cell cohesion and allows for junction contractility, which shapes epithelial tissues during development. Here, we report that the cytoskeletal adaptor protein Girdin physically and functionally interacts with components of the cadherin-catenin complex during Drosophila embryogenesis. Fly Girdin is broadly expressed throughout embryonic development and enriched at the ZA in epithelial tissues. Girdin associates with the cytoskeleton and co-precipitates with the cadherin-catenin complex protein α-Catenin (α-Cat). Girdin mutations strongly enhance adhesion defects associated with reduced DE-cadherin (DE-Cad) expression. Moreover, the fraction of DE-Cad molecules associated with the cytoskeleton decreases in the absence of Girdin, thereby identifying Girdin as a positive regulator of adherens junction function. Girdin mutant embryos display isolated epithelial cell cysts and rupture of the ventral midline, consistent with defects in cell-cell cohesion. In addition, loss of Girdin impairs the collective migration of epithelial cells, resulting in dorsal closure defects. We propose that Girdin stabilizes epithelial cell adhesion and promotes morphogenesis by regulating the linkage of the cadherin-catenin complex to the cytoskeleton.
Assuntos
Caderinas/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Proteínas do Citoesqueleto/metabolismo , Drosophila , Proteínas de Drosophila/metabolismo , Morfogênese/fisiologiaRESUMO
The cadherin-catenin adhesion complex is a key contributor to epithelial tissue stability and dynamic cell movements during development and tissue renewal. How this complex is regulated to accomplish these functions is not fully understood. We identified several phosphorylation sites in mammalian αE-catenin (also known as catenin α-1) and Drosophila α-Catenin within a flexible linker located between the middle (M)-region and the carboxy-terminal actin-binding domain. We show that this phospho-linker (P-linker) is the main phosphorylated region of α-catenin in cells and is sequentially modified at casein kinase 2 and 1 consensus sites. In Drosophila, the P-linker is required for normal α-catenin function during development and collective cell migration, although no obvious defects were found in cadherin-catenin complex assembly or adherens junction formation. In mammalian cells, non-phosphorylatable forms of α-catenin showed defects in intercellular adhesion using a mechanical dispersion assay. Epithelial sheets expressing phosphomimetic forms of α-catenin showed faster and more coordinated migrations after scratch wounding. These findings suggest that phosphorylation and dephosphorylation of the α-catenin P-linker are required for normal cadherin-catenin complex function in Drosophila and mammalian cells.
Assuntos
Caderinas/metabolismo , Caseína Quinase II/metabolismo , Caseína Quinase I/metabolismo , Adesão Celular , Drosophila melanogaster/metabolismo , alfa Catenina/metabolismo , Actinas/metabolismo , Sequência de Aminoácidos , Animais , Apoptose , Western Blotting , Caderinas/genética , Caseína Quinase I/genética , Caseína Quinase II/genética , Membrana Celular/metabolismo , Movimento Celular , Proliferação de Células , Células Cultivadas , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Cães , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Imunofluorescência , Humanos , Imunoprecipitação , Células Madin Darby de Rim Canino , Dados de Sequência Molecular , Ovário/citologia , Ovário/metabolismo , Fosforilação , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , alfa Catenina/química , alfa Catenina/genéticaRESUMO
The integrity of polarized epithelia is critical for development and human health. Many questions remain concerning the full complement and the function of the proteins that regulate cell polarity. Here we report that the Drosophila FERM proteins Yurt (Yrt) and Coracle (Cora) and the membrane proteins Neurexin IV (Nrx-IV) and Na(+),K(+)-ATPase are a new group of functionally cooperating epithelial polarity proteins. This 'Yrt/Cora group' promotes basolateral membrane stability and shows negative regulatory interactions with the apical determinant Crumbs (Crb). Genetic analyses indicate that Nrx-IV and Na(+),K(+)-ATPase act together with Cora in one pathway, whereas Yrt acts in a second redundant pathway. Moreover, we show that the Yrt/Cora group is essential for epithelial polarity during organogenesis but not when epithelial polarity is first established or during terminal differentiation. This property of Yrt/Cora group proteins explains the recovery of polarity in embryos lacking the function of the Lethal giant larvae (Lgl) group of basolateral polarity proteins. We also find that the mammalian Yrt orthologue EPB41L5 (also known as YMO1 and Limulus) is required for lateral membrane formation, indicating a conserved function of Yrt proteins in epithelial polarity.
Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Epitélio/fisiologia , Proteínas de Membrana/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Moléculas de Adesão Celular Neuronais/genética , Linhagem Celular , Polaridade Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Epitélio/embriologia , Técnicas de Silenciamento de Genes , Proteínas de Membrana/genética , Mutação , Fenótipo , ATPase Trocadora de Sódio-Potássio/genéticaRESUMO
α-catenin associates the cadherin-catenin complex with the actin cytoskeleton. α-catenin binds to ß-catenin, which links it to the cadherin cytoplasmic tail, and F-actin, but also to a multitude of actin-associated proteins. These interactions suggest a highly complex cadherin-actin interface. Moreover, mammalian αE-catenin has been implicated in a cadherin-independent cytoplasmic function in Arp2/3-dependent actin regulation, and in cell signaling. The function and regulation of individual molecular interactions of α-catenin, in particular during development, are not well understood. We have generated mutations in Drosophila α-Catenin (α-Cat) to investigate α-Catenin function in this model, and to establish a setup for testing α-Catenin-related constructs in α-Cat-null mutant cells in vivo. Our analysis of α-Cat mutants in embryogenesis, imaginal discs and oogenesis reveals defects consistent with a loss of cadherin function. Compromising components of the Arp2/3 complex or its regulator SCAR ameliorate the α-Cat loss-of-function phenotype in embryos but not in ovaries, suggesting negative regulatory interactions between α-Catenin and the Arp2/3 complex in some tissues. We also show that the α-Cat mutant phenotype can be rescued by the expression of a DE-cadherin::α-Catenin fusion protein, which argues against an essential cytosolic, cadherin-independent role of Drosophila α-Catenin.
Assuntos
Junções Aderentes/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Deleção de Genes , alfa Catenina/genética , alfa Catenina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Junções Aderentes/genética , Animais , Proteínas do Domínio Armadillo/genética , Proteínas do Domínio Armadillo/metabolismo , Caderinas/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/genética , Feminino , Cabeça/crescimento & desenvolvimento , Discos Imaginais/metabolismo , Larva/crescimento & desenvolvimento , Masculino , Mutagênese , Oogênese/genética , Folículo Ovariano/citologia , Folículo Ovariano/metabolismo , Fenótipo , Espectrina/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Zigoto/metabolismo , alfa Catenina/deficiênciaRESUMO
α-Catenin couples the cadherin-catenin complex to the actin cytoskeleton. The mechanosensitive α-Catenin M region undergoes conformational changes upon application of force to recruit interaction partners. Here, we took advantage of the tension landscape in the Drosophila embryo to define three different states of α-Catenin mechanosensing in support of cell adhesion. Low-, medium-, and high-tension contacts showed a corresponding recruitment of Vinculin and Ajuba, which was dependent on the α-Catenin M region. In contrast, the Afadin homolog Canoe acts in parallel to α-Catenin at bicellular low- and medium-tension junctions but requires an interaction with α-Catenin for its tension-sensitive enrichment at high-tension tricellular junctions. Individual M region domains make complex contributions to cell adhesion through their impact on interaction partner recruitment, and redundancies with the function of Canoe. Our data argue that α-Catenin and its interaction partners are part of a cooperative and partially redundant mechanoresponsive network that supports AJs remodeling during morphogenesis.
Assuntos
Adesão Celular , Proteínas de Drosophila , alfa Catenina , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Junções Aderentes/metabolismo , alfa Catenina/genética , alfa Catenina/metabolismo , Caderinas/genética , Caderinas/metabolismo , Morfogênese , Vinculina/genética , Vinculina/metabolismo , Drosophila , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismoRESUMO
Cdc42, a highly conserved small GTPase of the Rho family, acts as a molecular switch to modulate a wide range of signaling pathways. Vesicle trafficking and cell polarity are two processes Cdc42 is known to regulate. Although the trafficking and polarity machineries are each well understood, how they interact to cross-regulate each other in cell polarization is still a mystery. Cdc42 is an interesting candidate that may integrate these two networks within the cell. Here we review findings on the interplay between Cdc42 and trafficking in yeast, Caenorhabditis elegans, Drosophila and mammalian cell culture systems, and discuss recent advances in our understanding of the function of Cdc42 and two of its effectors, the WASp-Arp2/3 and Par complexes, in regulating polarized traffic. Work in yeast suggests that the polarized distribution of Cdc42, which acts here as a key polarity determinant, requires input from multiple processes including endocytosis and recycling. In metazoan cells, Cdc42 can regulate several steps in the biosynthetic as well as endocytotic and recycling pathways. The recent discovery that the Par polarity complex co-operates with Cdc42 in the regulation of endocytosis and recycling opens exciting possibilities for the integration of polarity protein function and endocytotic machinery.
Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Polaridade Celular , Proteínas de Drosophila/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Vesículas Secretórias/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Animais , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/metabolismo , Células Cultivadas , Drosophila/embriologia , Drosophila/metabolismo , Endocitose , Complexo de Golgi/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismoRESUMO
Laminins are heterotrimeric molecules found in all basement membranes. In mammals, they have been involved in diverse developmental processes, from gastrulation to tissue maintenance. The Drosophila genome encodes two laminin alpha chains, one beta and one Gamma, which form two distinct laminin trimers. So far, only mutations affecting one or other trimer have been analysed. In order to study embryonic development in the complete absence of laminins, we mutated the gene encoding the sole laminin beta chain in Drosophila, LanB1, so that no trimers can be made. We show that LanB1 mutant embryos develop until the end of embryogenesis. Electron microscopy analysis of mutant embryos reveals that the basement membranes are absent and the remaining extracellular material appears disorganised and diffuse. Accordingly, abnormal accumulation of major basement membrane components, such as Collagen IV and Perlecan, is observed in mutant tissues. In addition, we show that elimination of LanB1 prevents the normal morphogenesis of most organs and tissues, including the gut, trachea, muscles and nervous system. In spite of the above structural roles for laminins, our results unravel novel functions in cell adhesion, migration and rearrangement. We propose that while an early function of laminins in gastrulation is not conserved in Drosophila and mammals, their function in basement membrane assembly and organogenesis seems to be maintained throughout evolution.
Assuntos
Membrana Basal/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila/embriologia , Embrião não Mamífero/fisiologia , Laminina/fisiologia , Animais , Membrana Basal/embriologia , Adesão Celular , Movimento Celular , Colágeno Tipo IV/metabolismo , Drosophila/fisiologia , Proteoglicanas de Heparan Sulfato/metabolismo , Morfogênese/genética , Mutação , Especificidade de ÓrgãosRESUMO
Epithelial cells often leave their tissue context and ingress to form new cell types or acquire migratory ability to move to distant sites during development and tumor progression. Cells lose their apical membrane and epithelial adherens junctions during ingression. However, how factors that organize apical-basal polarity contribute to ingression is unknown. Here, we show that the dynamic regulation of the apical Crumbs polarity complex is crucial for normal neural stem cell ingression. Crumbs endocytosis and recycling allow ingression to occur in a normal timeframe. During early ingression, Crumbs and its complex partner the RhoGEF Cysts support myosin and apical constriction to ensure robust ingression dynamics. During late ingression, the E3-ubiquitin ligase Neuralized facilitates the disassembly of the Crumbs complex and the rapid endocytic removal of the apical cell domain. Our findings reveal a mechanism integrating cell fate, apical polarity, endocytosis, vesicle trafficking, and actomyosin contractility to promote cell ingression, a fundamental morphogenetic process observed in animal development and cancer.
Assuntos
Membrana Celular , Proteínas de Drosophila , Células Epiteliais , Proteínas de Membrana , Células-Tronco Neurais , Junções Aderentes/metabolismo , Animais , Membrana Celular/metabolismo , Polaridade Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Células Epiteliais/citologia , Proteínas de Membrana/metabolismo , Morfogênese/fisiologia , Células-Tronco Neurais/citologia , Ubiquitina-Proteína Ligases/metabolismoRESUMO
The Crumbs (Crb) complex is a key regulator of epithelial cell architecture where it promotes apical membrane formation. Here, we show that binding of the FERM protein Yurt to the cytoplasmic domain of Crb is part of a negative-feedback loop that regulates Crb activity. Yurt is predominantly a basolateral protein but is recruited by Crb to apical membranes late during epithelial development. Loss of Yurt causes an expansion of the apical membrane in embryonic epithelia and photoreceptor cells similar to Crb overexpression and in contrast to loss of Crb. Analysis of yurt crb double mutants suggests that these genes function in one pathway and that yurt negatively regulates crb. We also show that the mammalian Yurt orthologs YMO1 and EHM2 bind to mammalian Crb proteins. We propose that Yurt is part of an evolutionary conserved negative-feedback mechanism that restricts Crb complex activity in promoting apical membrane formation.
Assuntos
Padronização Corporal , Membrana Celular/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Epitélio/fisiologia , Proteínas de Membrana/metabolismo , Animais , Polaridade Celular , Proteínas de Drosophila/fisiologia , Indução Embrionária/genética , Humanos , Proteínas de Membrana/fisiologia , Camundongos , Retina/embriologia , Medula Espinal/embriologiaRESUMO
The formation of epithelial lumina is a fundamental process in animal development. Each ommatidium of the Drosophila retina forms an epithelial lumen, the interrhabdomeral space, which has a critical function in vision as it optically isolates individual photoreceptor cells. Ommatidia containing an interrhabdomeral space have evolved from ancestral insect eyes that lack this lumen, as seen, for example, in bees. In a genetic screen, we identified eyes shut (eys) as a gene that is essential for the formation of matrix-filled interrhabdomeral space. Eys is closely related to the proteoglycans agrin and perlecan and secreted by photoreceptor cells into the interrhabdomeral space. The honeybee ortholog of eys is not expressed in photoreceptors, raising the possibility that recruitment of eys expression has made an important contribution to insect eye evolution. Our findings show that the secretion of a proteoglycan into the apical matrix is critical for the formation of epithelial lumina in the fly retina.
Assuntos
Agrina/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila/embriologia , Proteínas do Olho/fisiologia , Proteoglicanas de Heparan Sulfato/fisiologia , Retina/embriologia , Alelos , Sequência de Aminoácidos , Animais , Drosophila/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Embrião não Mamífero , Proteínas do Olho/química , Proteínas do Olho/genética , Deleção de Genes , Imuno-Histoquímica , Modelos Biológicos , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Retina/citologia , Retina/ultraestrutura , Homologia de Sequência de AminoácidosRESUMO
Several protein complexes that are involved in epithelial apicobasal polarity have been identified. However, the mechanism by which these complexes interact to form an integrated polarized cell morphology remains unclear. Crumbs (Crb) and Lethal giant larvae (Lgl) are components of distinct complexes that regulate epithelial polarization in Drosophila melanogaster, but may not interact directly as they localize to the apical and basolateral membrane, respectively. Nevertheless, a genetic screen identifies marked functional interactions between crb and lgl. These interactions extend to other genes within the crb (stardust, sdt) and lgl (discs large, dlg; scribble, scrib) pathways. Our findings suggest that the crb and lgl pathways function competitively to define apical and basolateral surfaces. They also suggest that in the absence of lgl pathway activity, the crb pathway is not required to maintain epithelial polarity. Moreover, we show that crb and lgl cooperate in zonula adherens formation early in development. At later stages, epithelial cells in these mutants acquire normal polarity, indicating the presence of compensatory mechanisms. We find that bazooka (baz) functions redundantly with crb/sdt to support apical polarity at mid- to late-embryogenesis. Despite regaining cell polarity, however, epithelial cells in crb and lgl pathway mutants fail to re-establish normal overall tissue architecture, indicating that the timely acquisition of polarized cell structure is essential for normal tissue organization.
Assuntos
Polaridade Celular/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Proteínas de Membrana/fisiologia , Proteínas Supressoras de Tumor , Animais , Diferenciação Celular , Drosophila melanogaster/embriologia , Drosophila melanogaster/crescimento & desenvolvimento , Embrião não Mamífero/citologia , Embrião não Mamífero/fisiologia , Células Epiteliais/ultraestrutura , Larva , Microscopia EletrônicaRESUMO
Insulin-like growth factors (IGFs) control cell and organism growth through evolutionarily conserved signaling pathways. The mammalian acid-labile subunit (ALS) is a secreted protein that complexes with IGFs to modulate their activity. Recent work has shown that a Drosophila homolog of ALS, dALS, can also complex with and modulate the activity of a Drosophila IGF. Here we report the first mutations in the gene encoding dALS. Unexpectedly, we find that these mutations are allelic to a previously described mutation in convoluted (conv), a gene required for epithelial morphogenesis. In conv mutants, the tubes of the Drosophila tracheal system become abnormally elongated without altering tracheal cell number. conv null mutations cause larval lethality, but do not disrupt several processes required for tracheal tube size control, including septate junction formation, deposition of a lumenal/apical extracellular matrix, and lumenal secretion of Vermiform and Serpentine, two putative matrix-modifying proteins. Clearance of lumenal matrix and subcellular localization of clathrin also appear normal in conv mutants. However, we show that Conv/dALS is required for the dynamic organization of the transient lumenal matrix and normal structure of the cuticle that lines the tracheal lumen. These and other data suggest that the Conv/dALS-dependent tube size control mechanism is distinct from other known processes involved in tracheal tube size regulation. Moreover, we present evidence indicating that Conv/dALS has a novel, IGF-signaling independent function in tracheal morphogenesis.
Assuntos
Proteínas de Drosophila/fisiologia , Drosophila/embriologia , Drosophila/genética , Matriz Extracelular/fisiologia , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/fisiologia , Morfogênese/genética , Traqueia/embriologia , Animais , Bronquíolos/embriologia , Bronquíolos/metabolismo , Adesão Celular/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Embrião não Mamífero , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/química , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Proteínas de Repetições Ricas em Leucina , Filogenia , Proteínas/genética , Proteínas/metabolismo , Proteínas/fisiologia , Transdução de Sinais/genética , Somatomedinas/metabolismo , Somatomedinas/fisiologia , Traqueia/metabolismoRESUMO
Polarized exocytosis plays a major role in development and cell differentiation but the mechanisms that target exocytosis to specific membrane domains in animal cells are still poorly understood. We characterized Drosophila Sec6, a component of the exocyst complex that is believed to tether secretory vesicles to specific plasma membrane sites. sec6 mutations cause cell lethality and disrupt plasma membrane growth. In developing photoreceptor cells (PRCs), Sec6 but not Sec5 or Sec8 shows accumulation at adherens junctions. In late PRCs, Sec6, Sec5, and Sec8 colocalize at the rhabdomere, the light sensing subdomain of the apical membrane. PRCs with reduced Sec6 function accumulate secretory vesicles and fail to transport proteins to the rhabdomere, but show normal localization of proteins to the apical stalk membrane and the basolateral membrane. Furthermore, we show that Rab11 forms a complex with Sec5 and that Sec5 interacts with Sec6 suggesting that the exocyst is a Rab11 effector that facilitates protein transport to the apical rhabdomere in Drosophila PRCs.
Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Células Epiteliais/metabolismo , Exocitose/fisiologia , Olho/crescimento & desenvolvimento , Proteínas de Membrana/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Junções Aderentes/genética , Junções Aderentes/metabolismo , Junções Aderentes/ultraestrutura , Sequência de Aminoácidos , Animais , Sequência de Bases , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Proteínas de Drosophila/genética , Proteínas de Drosophila/isolamento & purificação , Drosophila melanogaster/ultraestrutura , Células Epiteliais/ultraestrutura , Olho/metabolismo , Olho/ultraestrutura , Feminino , Células Germinativas/metabolismo , Células Germinativas/ultraestrutura , Larva/crescimento & desenvolvimento , Larva/metabolismo , Larva/ultraestrutura , Proteínas de Membrana/genética , Proteínas de Membrana/isolamento & purificação , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Mutação/genética , Células Fotorreceptoras de Invertebrados/ultraestrutura , Transporte Proteico/fisiologia , Vesículas Secretórias/metabolismo , Vesículas Secretórias/ultraestrutura , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/isolamento & purificação , Proteínas rab de Ligação ao GTP/metabolismoRESUMO
Actin-based protrusions can form prominent structures on the apical surface of epithelial cells, such as microvilli. Several cytoplasmic factors have been identified that control the dynamics of actin filaments in microvilli. However, it remains unclear whether the plasma membrane participates actively in microvillus formation. In this paper, we analyze the function of Drosophila melanogaster cadherin Cad99C in the microvilli of ovarian follicle cells. Cad99C contributes to eggshell formation and female fertility and is expressed in follicle cells, which produce the eggshells. Cad99C specifically localizes to apical microvilli. Loss of Cad99C function results in shortened and disorganized microvilli, whereas overexpression of Cad99C leads to a dramatic increase of microvillus length. Cad99C that lacks most of the cytoplasmic domain, including potential PDZ domain-binding sites, still promotes excessive microvillus outgrowth, suggesting that the amount of the extracellular domain determines microvillus length. This study reveals Cad99C as a critical regulator of microvillus length, the first example of a transmembrane protein that is involved in this process.
Assuntos
Caderinas/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Precursores de Proteínas/genética , Animais , Proteínas Relacionadas a Caderinas , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Feminino , Humanos , Microvilosidades/fisiologia , Microvilosidades/ultraestrutura , Oogênese , Folículo Ovariano/fisiologia , Folículo Ovariano/ultraestrutura , Estrutura Terciária de ProteínaRESUMO
Retromer, including Vps35, Vps26, and Vps29, is a protein complex responsible for recycling proteins within the endolysosomal pathway. Although implicated in both Parkinson's and Alzheimer's disease, our understanding of retromer function in the adult brain remains limited, in part because Vps35 and Vps26 are essential for development. In Drosophila, we find that Vps29 is dispensable for embryogenesis but required for retromer function in aging adults, including for synaptic transmission, survival, and locomotion. Unexpectedly, in Vps29 mutants, Vps35 and Vps26 proteins are normally expressed and associated, but retromer is mislocalized from neuropil to soma with the Rab7 GTPase. Further, Vps29 phenotypes are suppressed by reducing Rab7 or overexpressing the GTPase activating protein, TBC1D5. With aging, retromer insufficiency triggers progressive endolysosomal dysfunction, with ultrastructural evidence of impaired substrate clearance and lysosomal stress. Our results reveal the role of Vps29 in retromer localization and function, highlighting requirements for brain homeostasis in aging.